This is a test site. The production site with full data is available at GBIF.org
{{nav.loginGreeting}}
  • Get data
      • Occurrences
      • GBIF API
      • Species
      • Datasets
      • Occurrence snapshots
      • Hosted portals
      • Trends
  • How-to
    • Share data

      • Quick-start guide
      • Dataset classes
      • Data hosting
      • Standards
      • Become a publisher
      • Data quality
      • Data papers
    • Use data

      • Featured data use
      • Citation guidelines
      • GBIF citations
      • Citation widget
      • Guides and documentation
  • Tools
    • Publishing

      • IPT
      • Data validator
      • GeoPick
      • New data model
      • GRSciColl
      • Suggest a dataset
      • Metabarcoding data toolkit
    • Data access and use

      • Hosted portals
      • Scientific collections
      • Data processing
      • Derived datasets
      • rgbif
      • pygbif
      • MAXENT
      • Tools catalogue
    • GBIF labs

      • Species matching
      • Name parser
      • Sequence ID
      • Relative observation trends
      • GBIF data blog
  • Community
    • Network

      • Participant network
      • Nodes
      • Publishers
      • Network contacts
      • Community forum
      • alliance for biodiversity knowledge
    • Volunteers

      • Mentors
      • Ambassadors
      • Translators
      • Citizen scientists
    • Activities

      • Capacity development
      • Programmes & projects
      • Training and learning resources
      • Data Use Club
      • Living Atlases
  • About
    • Inside GBIF

      • What is GBIF?
      • Become a member
      • Governance
      • Strategic framework
      • Work Programme
      • Funders
      • Partnerships
      • Release notes
      • Contacts
    • News & outreach

      • News
      • Subscribe
      • Events
      • Awards
      • Science Review
      • Data use
      • Thematic communities
  • User profile

Dataset of Phenology of flora of mediterranean high-mountains meadows (Sierra Nevada)

Dataset homepage

Citation

Zamora Rodríguez R J, Pérez-Luque A J (2020). Dataset of Phenology of flora of mediterranean high-mountains meadows (Sierra Nevada). Version 1.5. Sierra Nevada Global-Change Observatory (UGR-JA). Occurrence dataset https://doi.org/10.15468/qhqzub accessed via GBIF.org on 2025-07-12.

Description

Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988-1990 and 2009-2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

Sampling Description

Study Extent

The Mediterranean high-mountain meadows (know locally as “borreguiles”) are ecosystems conditioned by the snow dynamics and potentially sensitive to changes in water availability and temperature (Fernández Casas, 1974; Martínez Parras et al. 1985). This ecosystem occupies an altitudinal range between 2200 and 3000 m a.s.l. and its distribution is determined by accumulation of the meltwater (Fernández-Casas 1974). Although it represents only 1.4% of this mountain range (1125 ha), it has a high rate of plant endemicity (Table 1) (Bonet et al. 2010; APMM 2013). The borreguiles is included in the Annex I of the Habitats Directive (EU habitat code 6230) (Bartolomé et al. 2005; Rigueiro et al. 2009). This ecosystem settles over hydromorphic soils that develop around mountain lakes, streams, depressions and glacier origin valleys. The overall appearance of borreguiles in summer is intense green, contrasting with the yellowish color of the surrounding psychroxerophiles grasslands. This ecosystem contains several plant communities arranged as parallel bands in relation to water courses (Lorite 2002). The floristic composition of these communities depends on moisture content of the substrate. First, on some moist soil, as a transition from dry grasslands to borreguiles themselves, there is a medium coverage grassland called dry borreguil. It hosts species such Agrostis nevadensis, Plantago nivalis, Ranunculus acetosellifolius, Thymus serpylloides or Arenaria tetraquetra subsp. amabilis (among others) (Losa et al. 1985, Lorite 2002). Then dense grassland appears, located in areas with constant moisture throughout the summer and deep soils. As typical species of this community include Nardus stricta, Festuca iberica, Leontodon microcephalus, Lotus corniculatus subsp. glacialis, Luzula spicata, Ranunculus demissus and Campanula herminii. Moreover, in the rocky promontories areas forming the borreguil are enriched with the presence of Vaccinium uliginosum subsp. nanum and Ranunculus acetosellifolius. In places where there is constant flooding and still waters until fall, the optimum conditions of oxygen deprivation exist for incipient peat formations are installed. These communities are characterized by the presence of species such as Carex nigra, Eleocharis quinqueflora, C. echinata, C. nevadensis, Juncus articulatus, Ranunculus angustifolius, Pinguicula nevadensis or Festuca frigida. In addition to its high ecological value, this ecosystem plays an important role in transhumance livestock systems (Robles et al. 2009). They are pastures with a high nutritive value and with the greater forage production of the Sierra Nevada ecosystems (Boza et al. 2008; González-Rebollar 2006; Robles et al 2009, APMM 2013). This is important because they act as a trophic reserve for livestock in summer (Fernández-Casas 1974; Robles 2008). However the abandonment of uses linked this practice has tended effect of reducing the area of this ecosystems and consequent overloading of neighboring (González-Rebollar 2006; Robles 2008) We selected one of the most representative borreguiles of Sierra Nevada, located at San Juan basin river (Guejar-Sierra; Granada, Spain).The catchment area is about 1325 Ha. This basin was formed by glacial erosion of the bedrock (mica schists) and presents a valley with U-shaped (Martín Martín et al. 2010).

Sampling

We sampled at three localities along an altitudinal gradient: one at Prado de la Mojonera (Low Altitude; around 2200 m a.s.l.) and two at Hoya del Moro (Middle and High altitude; 2430-2550 m a.s.l. and around 2775 m a.s.l respectively). For each locality, the sampling was performed every 15 days during the free-snow period once a year from 1988-1990 and from 2009 to 2013. For the middle altitude locality we have data from two periods: 1988-1990 and 2009-2013. For low and high altitude locations we have data from 2009-2013 period. In each locality permanent plots of 1 x 1 m were randomly distributed. In each plot a floristic inventory was carried out. The presence/absence and an estimation of abundance-coverage using the Braun-Blanquet cover-abundance scale (Braun-Blanquet 1964) were recorded for each taxa. We also counted the number of individuals belong to three main phenological phase (phenophase) established: vegetative phenophase, reproductive phenophase (flowering) and seed phenophase. Plots were divided into quadrats of 25 x 25 cm to facilitate counting.

Quality Control

The sampling plots were georeferenced using a Garmin eTrex Legend GPS (ED1950 Datum) with an accuracy of ±5 m. We also used colour digital ortophotographs provided by the Andalusian Cartography Institute and GIS (ArcGIS 9.2; ESRI, Redlands, California, USA) to verify that the geographical coordinates of each sampling plots were correct (Chapman and Wieczorek 2006). The specimens were taxonomically identified using Flora Iberica (Castroviejo et al. 1986-2005) and others reference floras: Flora de Andalucía Oriental (Blanca et al. 2011), Flora Vascular de Andalucía Oriental (Valdés et al. 1987) and Flora Europaea (Tutin et al. 1964–1980). The scientific names were checked with databases of International Plant Names Index (IPNI 2013) and Catalogue of Life/Species 2000 (Roskov et al. 2013). We also used the R packages taxize (Chamberlian and Szocs 2013; Chamberlain et al. 2014) and Taxostand (Cayuela and Oksanen 2014) to verify the taxonomical classification. We also performed validation procedures (geopraphic coordinate format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset) with DARWIN_TEST (v3.2) software (Ortega-Maqueda and Pando, 2008).

Method steps

  1. All data were stored in a normalized database and incorporated into the Information System of Sierra Nevada Global Change Observatory. Taxonomic and spatial validations were made on this database (see Quality control description). A custom-made SQL view of the database was performed to gather occurrence data and others variables associated to some occurence data, specifically: • Flowering abundance: number of flowering individuals by square meter • Fruit abundance: number of individuals in fruiting period by square meter • Cover: the percentage of cover by taxon. The value represents a transformation of Braun-Blanquet cover-abundance scale (van der Maarel 1979, 2007) The occurrence and measurement data were accommodated to fulfill the Darwin Core Standard (Wieczorek et al. 2009; 2012). We used Darwin Core Archive Validator tool (http://tools.gbif.org/dwca-validator/) to check whether the dataset meets Darwin Core specifications. The Integrated Publishing Toolkit (IPT v2.0.5) (Robertson et al. 2014) of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://www.gbif.es:8080/ipt) was used both to upload the Darwin Core Archive and to fill out the metadata. The Darwin Core elements for the occurrence data included in the dataset are: occurrenceId, modified, language, basisOfRecord, institutionCode, collectionCode, datasetName, catalogNumber, scientificName, kingdom, phylum, class, order, family, genus, specificEpithet, infraspecificEpithet, scientificNameAuthorship, continent, country, countryCode, stateProvince, county, locality, minimumElevationInMeters, maximumElevationInMeters, decimalLongitude, decimalLatitude, coordinateUncertaintyinMeters, geodeticDatum, recordedBy, DayCollected, MonthCollected, YearCollected, EventDate. For the measurement data, the Darwin Core elements included are: id, measurementID, measurementType, measurementValue, measurementAccuracy, measurementUnit, measurementDeterminedDate, measurementDeterminedBy, measurementMethod, measurementRemarks.

Taxonomic Coverages

This dataset includes records of the phylum Magnoliophyta (10939 records, 99.43%) and marginally Pteridophyta (63 records, below 1% of total records). Most of the records included in this dataset belong to both the class Magnoliopsida (6057 records; 55.04%) and Liliopsida (4883 records; 44.37%). The class Psilotopsida is represented by 63 records. There are 19 orders represented in the dataset, Poales (44.25%) and Lamiales (12.52%) being the most important order from classes Liliopsida and Magnoliopsida, respectively. The class Psilotopsida is represented only by order Ophioglossales. In this collection, 28 families are represented, with Cyperaceae, Poaceae and Fabaceae being the families with highest number of records. The dataset contains 72 taxa belonging to 51 genera. Carex, Nardus, and Scorzoneroides are the most represented genera in the database. There are 29 threatened taxa.
  1. Plantae
    rank: kingdom
  2. Magnoliophyta
    rank: phylum
  3. Pteridophyta
    rank: phylum
  4. Liliopsida
    rank: class
  5. Magnoliopsida
    rank: class
  6. Psilotopsida
    rank: class
  7. Apiales
    rank: order
  8. Asterales
    rank: order
  9. Asparagales
    rank: order
  10. Boraginales
    rank: order
  11. Brassicales
    rank: order
  12. Caryophyllales
    rank: order
  13. Celastrales
    rank: order
  14. Ericales
    rank: order
  15. Fabales
    rank: order
  16. Gentianales
    rank: order
  17. Lamiales
    rank: order
  18. Liliales
    rank: order
  19. Malpighiales
    rank: order
  20. Myrtales
    rank: order
  21. Ophioglossales
    rank: order
  22. Poales
    rank: order
  23. Ranunculales
    rank: order
  24. Rosales
    rank: order
  25. Saxifragales
    rank: order
  26. Apiaceae
    rank: family
  27. Asparagaceae
    rank: family
  28. Asteraceae
    rank: family
  29. Boraginaceae
    rank: family
  30. Brassicaceae
    rank: family
  31. Campanulaceae
    rank: family
  32. Caryophyllaceae
    rank: family
  33. Celastraceae
    rank: family
  34. Crassulaceae
    rank: family
  35. Cyperaceae
    rank: family
  36. Ericaceae
    rank: family
  37. Fabaceae
    rank: family
  38. Gentianaceae
    rank: family
  39. Juncaceae
    rank: family
  40. Lentibulariaceae
    rank: family
  41. Liliaceae
    rank: family
  42. Linaceae
    rank: family
  43. Onagraceae
    rank: family
  44. Ophioglossaceae
    rank: family
  45. Plantaginaceae
    rank: family
  46. Poaceae
    rank: family
  47. Portulacaceae
    rank: family
  48. Polygonaceae
    rank: family
  49. Ranunculaceae
    rank: family
  50. Rosaceae
    rank: family
  51. Rubiaceae
    rank: family
  52. Scrophulariaceae
    rank: family
  53. Violaceae
    rank: family
  54. Agrostis
    rank: genus
  55. Anthericum
    rank: genus
  56. Arenaria
    rank: genus
  57. Botrychium
    rank: genus
  58. Bromus
    rank: genus
  59. Campanula
    rank: genus
  60. Carex
    rank: genus
  61. Cerastium
    rank: genus
  62. Cirsium
    rank: genus
  63. Dactylis
    rank: genus
  64. Draba
    rank: genus
  65. Eleocharis
    rank: genus
  66. Epilobium
    rank: genus
  67. Erophila
    rank: genus
  68. Eryngium
    rank: genus
  69. Euphrasia
    rank: genus
  70. Festuca
    rank: genus
  71. Gagea
    rank: genus
  72. Galium
    rank: genus
  73. Gentiana
    rank: genus
  74. Gentianella
    rank: genus
  75. Herniaria
    rank: genus
  76. Juncus
    rank: genus
  77. Linaria
    rank: genus
  78. Lotus
    rank: genus
  79. Luzula
    rank: genus
  80. Meum
    rank: genus
  81. Montia
    rank: genus
  82. Myosotis
    rank: genus
  83. Nardus
    rank: genus
  84. Parnassia
    rank: genus
  85. Paronychia
    rank: genus
  86. Phleum
    rank: genus
  87. Pinguicula
    rank: genus
  88. Plantago
    rank: genus
  89. Poa
    rank: genus
  90. Potentilla
    rank: genus
  91. Radiola
    rank: genus
  92. Ranunculus
    rank: genus
  93. Rumex
    rank: genus
  94. Sagina
    rank: genus
  95. Scorzoneroides
    rank: genus
  96. Sedum
    rank: genus
  97. Silene
    rank: genus
  98. Spergularia
    rank: genus
  99. Stellaria
    rank: genus
  100. Thlaspi
    rank: genus
  101. Trifolium
    rank: genus
  102. Vaccinium
    rank: genus
  103. Veronica
    rank: genus
  104. Viola
    rank: genus

Geographic Coverages

Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. which covers more than 2000 km2. The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12-16ºC below 1500 m to 0ºC above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude. The Sierra Nevada mountain range hosts a high number of endemic plant species (c. 80; Lorite et al. 2007) for a total of 2,100 species of vascular plants (25% and 20% of Spanish and European flora, respectively), being considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca et al. 1998; Cañadas et al. 2014). Sierra Nevada is an isolated high mountain range (reaching 3.482 m.a.s.l.) located in Southern Spain (37ºN, 3ºW) covering 2.100 km2. It hosts a high number of vegetal endemic species (c. 80) (Lorite et al. 2007) in a total of 2.100 species of vascular plants (25 % and 20 % of Spain and Europe flora respectively), being considered one of the most important biodiversity hotspot in the Mediterranean region (Blanca et al. 1998). It has several legal protections: Biosphere Reserve MAB Committee UNESCO; Special Protection Area and Site of Community Importance (Natura 2000 network); and National Park. This mountain area comprises 27 habitats types from the habitat directive. It contains 31 fauna species (20 birds, 5 mammals, 4 invertebrates, 2 amphibians and reptiles) and 20 plants species listed in the Annex I and II of habitats and birds directives. There are 61 municipalities with more than 90.000 inhabitants. The main economic activities are agriculture, tourism, beekeeping, mining and skiing (Bonet et al. 2010).

Bibliographic Citations

  1. APMM (Asociación Pastores por el Monte Mediterráneo) (2013). Ganadería Extensiva y PAC en Andalucía. Un análisis con propuestas para el futuro. Asociación Pastores por el Monte Mediterráneo and European Forum on Nature Conservation and Pastoral. Available at www.pastoresmonte.org/dl94 -
  2. Aspizua R, Bonet FJ, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2010) El observatorio de cambio global de Sierra Nevada: hacia la gestión adaptativa de los espacios naturales. Ecosistemas 19 (2): 56–68. http://www.revistaecosistemas.net/index.php/ecosistemas/article/view/46 -
  3. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) (2012) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 1–112. -
  4. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora RJ (2014) Sierra Nevada Global-Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía, 112 pp. Available at http://refbase.iecolab.es/files/aspizua/2014/2714_Aspizua_etal2014.pdf -
  5. Bartolomé C, Álvarez-Jiménez J, Vaquero J, Costa M, Casermeiro MA, Giraldo J, Zamora J (2005) Los tipos de hábitats de interés comunitario de España. Ministerio de Medio Ambiente. Madrid -
  6. Björnsen A (Ed) (2005) The GLOCHAMORE (Global Change and Mountain Regions) Research Strategy. Berne (Switzerland) and Vienna (Austria). Mountain Research Initiative Office and University of Vienna, 1– 48. http://unesdoc.unesco.org/images/0014/001471/147170E.pdf -
  7. Blanca G (1996) Protección de la flora de Sierra Nevada (Granada y Almería). Conservación Vegetal 1: 6 -
  8. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biological Conservation 85 (3): 269-285. doi: 10.1016/S0006-3207(97)00169-9 -
  9. Blanca G, López Onieva MR, Lorite J, Martínez Lirola MJ, Molero Mesa J, Quintas S, Ruíz-Girela M, Varo MA, Vidal S (2001) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada. Granada. 410 pp. -
  10. Blanca G, Cabezudo B, Cueto M, Fernández-López C, Morales-Torres C (Eds) (2011) Flora Vascular de Andalucía Oriental. Consejería de medio Ambiente, Junta de Andalucía, Sevilla. -
  11. Bonet FJ, Pérez-Luque AJ, Moreno R, Zamora R (2010) Sierra Nevada Global Change Observatory. Structure and Basic Data. Environment Department (Andalusian Regional Government)–University of Granada, 1–48. http://refbase.iecolab.es/files/bonet/2010/2905_Bonet_etal2010.pdf -
  12. Bonet FJ, Aspizua-Cantón R, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2011) Sierra Nevada Observatory for monitoring global change: Towards the adaptive management of natural resources. In: Austrian MaB Comitee (Ed) Biosphere Reserves in the mountains of the world. Excellence in the clouds?. Austrian Academy of Sciences Press, Vienna: 48-52. -
  13. Boza J, Robles AB, González-Rebollar JL (2007) El papel de la ganadería en las zonas áridas de Andalucía. In Rodero Franganillo A, Rodero Serrano E (Eds) La ganadería Andaluza en el siglo XXI. Patrimonio Ganadero Andaluz. Volumen I. Consejería de Agricultura y Pesca. Junta de Andalucía, 241–266. -
  14. Braun-Blanquet J (1964) Pflanzensoziologie. Springer Verlag, Wien, New York, 1 – 865. -
  15. Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo JE, Herrera CM, Rodríguez-Hiraldo C, Navas D (2005) Lista roja de la flora vascular de Andalucía. Junta de Andalucía, Consejería de Medio Ambiente; Sevilla, Spain. -
  16. Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation 170: 282–291 doi: 10.1016/j.biocon.2013.12.007 -
  17. Castroviejo S (Ed) (1986–2005) Flora Iberica. Real Jardín Botánico CSIC, Madrid. -
  18. Castroviejo S (Ed) (2001) Claves de Flora Ibérica. Plantas Vasculares de la Península Ibérica e Islas Baleares. Volumen 1. Consejo Superior de Investigaciones Científicas. Real Jardín Botánico, Madrid. -
  19. Cayuela L, Oksanen J (2014) Taxonstand: Taxonomic standardisation of plant species names. R package version 1.3. http://CRAN.R-project.org/package=Taxonstand -
  20. Chamberlain SA, Szöcs E (2013) taxize: taxonomic search and retrieval in R. F1000Research 2: 191. doi: 10.12688/f1000research.2-191.v2 -
  21. Chamberlain S, Szocs E, Boettiger C, Ram K, Bartomeus I, Baumgartner J (2014) taxize: Taxonomic information from around the web. R package version 0.3.0. https://github.com/ropensci/taxize -
  22. Chapman AD (2005a) Principles and Methods of Data Cleaning – Primary Species and Species-Occurrence Data, version 1.0. Global Biodiversity Information Facility, Copenhagen, 75 pp. http://www.gbif.org/orc/?doc_id=1262 -
  23. Chapman AD (2005b) Principles of Data Quality, version 1.0. Global Biodiversity Information Facility, Copenhagen, 61 pp. http://www.gbif.org/orc/?doc_id=1229 -
  24. Chapman AD, Wieczorek J (2006) Guide to Best Practices for Georeferencing. Copenhagen: Global Biodiversity Information Facility. Available online at http://www.gbif.org/orc/?doc_id=1288 -
  25. EC (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206: 7–50. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML -
  26. Esteban A (1996) Evolución del paisaje nevadense durante los últimos 1.500 años a partir del análisis polínico de borreguiles. 1ª Conferencia Internacional Sierra Nevada. Universidad de Granada. Granada, vol. IV. pp. 251-273. -
  27. Fernández-Casas J (1974). Vegetación y flora de Sierra Nevada. Los borreguiles. Boletín de la Estación Central de Ecología, 3: 29–42. -
  28. González-Rebollar JL (2006) Caracterización, análisis y dinámica de los sistemas silvopastorales del Parque Nacional de Sierra Nevada. Organismo Autónomo Parques Nacionales. Ministerio de Medioambiente. 2003-2006. -
  29. IPNI (2013) The International Plant Names Index. http://www.ipni.org [accessed 05.08.2014] -
  30. IUCN (2001) IUCN Red List Categories. Prepared by the IUCN Species Survival Commission. As approved by the 51st Meeting of the IUCN Council Gland, Switzerland. UICN, Gland, Switzerland. -
  31. Lorite J (2001). Vegetación de Sierra Nevada. Pp.: 23-45. In: Blanca G, López Onieva MR, Lorite J, Martínez Lirola MJ, Molero Mesa J, Quintas S, Ruíz-Girela M, Varo MA, Vidal S (Eds) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada. Granada. 410 pp. -
  32. Lorite J, Valle F, Salazar C (2003) Síntesis de la vegetación edafohigrófila del Parque Natural y Nacional de Sierra Nevada. Monografías Flora y Vegetación Béticas 13: 47–110 -
  33. Lorite J, Navarro FB, Valle F (2007) Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosystems 141 (1): 1-14. doi: 10.1080/11263500601153560 -
  34. Losa Quintana JM, Molero-Mesa J, Casares Porcel M, Pérez-Raya F (1986) El paisaje vegetal de Sierra Nevada: la cuenca alta del Río Genil. Servicio de Publicaciones de la Universidad de Granada, Granada. 285 pp. -
  35. Martín-Martín JM, Braga JC, Gómez-Pugnaire MT (2010) Itinerarios geológicos por Sierra Nevada. Consejería de Medio Ambiente. Junta de Andalucía. -
  36. Martínez-Parras, J.M.; Peinado, M. & Alcaraz, F. (1987). Datos sobre la vegetación de Sierra Nevada. Lazaroa, 7: 515–533. -
  37. Moreno JC (coord.) (2010) Lista Roja 2008 de la flora vascular española. Actualización con los datos del Adenda 2010 al Atlas y Libro Rojo de la Flora Vascular Amenazada. Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas). Madrid. 46 pp. -
  38. Ortega-Maqueda I, Pando F (2008) DARWIN_TEST v3.2: Una aplicación para la validación y el chequeo de los datos en formato Darwin Core 1.2 or Darwin Core 1.4. Unidad de Coordinación de GBIF.ES, CSIC. Ministerio de Educación y Ciencia. Madrid, Spain, http://www.gbif.es/Darwin_test/Darwin_test.php -
  39. Pérez-Luque AJ, Bonet FJ, Zamora R (2012) The Wiki of Sierra Nevada Global Change Observatory. Bulletin of the Ecological Society of America 93(3): 239–240. doi: 10.1890/0012-9623-93.3.239 -
  40. Pérez-Pérez R, Bonet FJ, Pérez-Luque AJ, Zamora R (2012) Linaria: a set of information management tools to aid environmental decision making in Sierra Nevada (Spain) LTER site. In: Long Term Ecological Research (LTER) (Ed) Proceedings of the 2013 LTER All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales. LTER, Estes Park - Colorado (EE.UU) -
  41. Rigueiro A, Rodríguez MA, Gómez-Orellana L (2009) 6230 Formaciones herbosas con Nardus, con numerosas especies, sobre sustratos silíceos de zonas montañosas (y de zonas submontañosas de Europa continental). In: VVAA (Ed) Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid, 66 pp. -
  42. Robles, AB (2008) En el conjunto de las Sierras Béticas: pastos, producción, diversidad y cambio global. In: Fernández-Rebollo P, Gómez-Cabrera A, Guerrero JE, Garrido-Varo A, Calzado C, García-Romero AM, Carbonero MD, Blázquez A, Escuín S, Castilo-Carrión S (Eds) Pastos, clave en la gestión de los territorios: integrando disciplinas. Sociedad Española para el Estudio de los Pastos. Consejería de Agricultura y Pesca. Junta de Andalucia. 31–51. -
  43. Robles AB, Ruiz-Mirazo J, Ramos ME, González-Rebollar JL (2009) Role of livestock grazing in sustainable use, naturalness promotion in naturalization of marginal ecosystems of southeastern Spain (Andalusia). In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (Eds) Agroforestry in Europe: current status and future prospects. Springer, 211–231. -
  44. Roskov Y, Kunze T, Paglinawan L, Abucay L, Orrell T, Nicolson D, Culham A, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Hernandez F, De Wever A, Didžiulis V (Eds) (2013) Species 2000 & ITIS Catalogue of Life. Species 2000: Reading, UK. http://www.catalogueoflife.org/col [accessed 08.05.2014] -
  45. Sánchez-Rojas CP (2012) Pastos húmedos de alta montaña: borreguiles. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 72–73. -
  46. Schaaf T (2009) Mountain Biosphere Reserves–A People Centred Approach that also Links Global Knowledge. Sustainable Mountain Development 55: 13–15. http://lib.icimod.org/record/26505/files/c_attachment_601_5624.pdf -
  47. Tutin TG et al. (Eds) (1964–1980) Flora Europaea, Cambridge University Presss, Cambridge, 1–5. -
  48. Valdés B, Talavera S, Fernández-Galiano E (Eds) (1987) Flora vascular de Andalucía Occidental, 1–3. Ketres, Barcelona. -
  49. van der Maabel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2): 97–114. doi: 10.1007/BF00052021 -
  50. van der Maarel E (2007) Transformation of cover-abundance values for appropriate numerical treatment – Alternatives to the proposals by Podani. Journal of Vegetation Science 18(5): 767–770. doi: 10.1111/j.1654-1103.2007.tb02592.x -
  51. Wieczorek J, Döring M, De Giovanni R, Robertson T, Vieglais D (2009) Darwin Core Terms: A quick reference guide. http://rs.tdwg.org/dwc/terms/ [accessed 17.10.2014]. -
  52. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7(1): e29715EP, doi: 10.1371/journal.pone.0029715 -
  53. Zamora R, Bonet FJ (2011) Programa de Seguimiento del Cambio Global en Sierra Nevada: ciencia y tecnología para la gestión adaptativa. Boletín de la RED de seguimiento del cambio global en Parques Nacionales, 1: 18–24. http://reddeparquesnacionales.mma.es/parques/rcg/html/rcg_boletin_01.htm -

Contacts

Regino Jesús Zamora Rodríguez
originator
position: Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
Granada
18071
Granada
ES
Telephone: (+34) 958 241000 ext 20037
email: rzamora@ugr.es
homepage: http://ecologia.ugr.es/pages/personal/profesorado/regino
Antonio Jesús Pérez-Luque
metadata author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: ajperez@ugr.es
homepage: http://iecolab.es/ajpelu
Regino Jesús Zamora Rodíguez
author
position: Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
Granada
18071
Granada
ES
Telephone: (+34) 958 241000 ext 20037
email: rzamora@ugr.es
homepage: http://ecologia.ugr.es/pages/personal/profesorado/regino
Antonio Jesús Pérez-Luque
author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: ajperez@ugr.es
homepage: http://iecolab.es/ajpelu
Cristina Patricia Sánchez-Rojas
content provider
position: Technician
Agencia de Medio Ambiente y Agua de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía
C/ Joaquina Egüaras, 10
Granada
18003
Granada
ES
email: cpsanchez@agenciamedioambienteyagua.es
homepage: http://www.agenciamedioambienteyagua.es
Francisco Javier Bonet García
author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: fjbonet@ugr.es
homepage: http://iecolab.es/fjbonet
Cristina Patricia Sánchez-Rojas
author
position: Technician
Agencia de Medio Ambiente y Agua de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía
C/ Joaquina Egüaras, 10
Granada
18003
Granada
ES
email: cpsanchez@agenciamedioambienteyagua.es
homepage: http://www.agenciamedioambienteyagua.es
Antonio Jesús Pérez-Luque
administrative point of contact
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: ajperez@ugr.es
homepage: http://iecolab.es/ajpelu
Ramón Pérez-Pérez
author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: ajpelu@gmail.com
homepage: http://iecolab.es/rperez
Antonio Jesús Pérez-Luque
administrative point of contact
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
Granada
18006
Granada
ES
email: ajperez@ugr.es
homepage: http://iecolab.es/ajpelu
What is GBIF? API FAQ Newsletter Privacy Terms and agreements Citation Code of Conduct Acknowledgements
Contact GBIF Secretariat Universitetsparken 15 DK-2100 Copenhagen Ø Denmark
GBIF is a Global Core Biodata Resource