Dataset of Passerine bird communities in a mediterranean high mountain (Sierra Nevada, Spain)
Citation
Barea-Azcón J M, Pérez-Luque A J (2018). Dataset of Passerine bird communities in a mediterranean high mountain (Sierra Nevada, Spain). Version 1.5. Sierra Nevada Global-Change Observatory (UGR-JA). Occurrence dataset https://doi.org/10.15468/ow9noo accessed via GBIF.org on 2024-12-12.Description
We describe a dataset of Passerine bird communities in Sierra Nevada, a Mediterranean high-mountain located in southern Spain. The dataset includes occurrences data from bird surveys carried out in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each contact both birds number and distance to transect line were recorded. A total of 27847 occurrences records were collected and 55694 measurements recorded. All records belong to Passeriformes order. 16 families and 44 genera were collected. Most of the taxa of the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.Sampling Description
Study Extent
This dataset covers four representative habitats within Sierra Nevada mountain range: Pyrenean oak forest , thorny thickets on the edge of the forest, common juniper and Spanish juniper scrublands and high-summit ecosystems. These ecosystems were selected based on criteria of singularity and ecological functionality in the context of Sierra Nevada (Barea-Azcón et al. 2012, 2014) and can be described as follow: - Pyrenean oak forest: Mediterranean woodland composed mainly of relict Quercus pyrenaica and some dominant scrubland species (i.e. Berberis hispanica, Prunus ramburii, Rosa canina, Crataegus monogyna and Adenocarpus decorticans). These forests show strong evidences of past management that determine their current structure and diversity. These management is mainly based on charcoal, pastureland creation, and wood production until the 1950s, so that the current trees are mostly resprouts of 60-70 years old. The target localities (n=4) are located at an average elevation of 1650 m a.s.l. (1600-1750 m a.s.l.) and are distributed in the south, west, north and east slopes of Sierra Nevada, reflecting all the ecological conditions of the Pyrenean oak forest in the study area (Pérez-Luque et al. 2013). -Thornscrubs: Typical areas dominated by thorny thickets on the edge of the forest or as result of recent colonization of abandoned arable lands. Berberis hispanica, Prunus ramburii, Rosa canina, Crataegus monogyna are dominant but other species as Lonicera arborea or even Sorbus spp. This open habitat is very important for breeding birds in the study area and also for winter visitors due to a great production of fruits from the end of the summer to the beginning of winter. Transect (n=4) in this habitat are located between 1450 and 2060 m a.s.l. (average: 1790 m a.s.l.). -Common juniper and Spanish juniper scrublands: vegetation in these localities is composed mainly of common juniper (Juniperus communis), Spanish juniper (Juniperus Sabina). Cytisus galianoi and Genista baetica are also important species in these ecosystems. These scrublands rarely exceed 60 cm in height and appear intermingled with rocks and stony ground. Transects (n=4) located in this ecosystems comprise an elevational range from 2000 to 2300 m a.s.l. (average: 2150 m a.s.l.). -High-summit ecosystems: composed by typical Alpine landscape. These ecosystems are characterized by rocky outcrops that originated from glacial activity, pastureland, small snow beds, and glacial lagoons. The four transects that represents this Mediterranean high mountain habitat comprise an elevational gradient from 2280 to 3100 m a.s.l., with an average elevation of 2580 m a.s.l.Sampling
Sampling procedure was the line-transect method (Verner, 1985), with a bandwidth of 50 m, 25 m on each side of the line (Barea-Azcón et al 2012, 2014). A total of 16 transect were sampled with lengths ranged from 1.9 to 3 km. Sight and sound records within the sample area were accepted as contacts. All transects were sampled in the early morning, under appropriate climatic conditions. The observer walks at a constant speed of 2 to 4 km/h. Transects are repeated at least once per month provided that the conditions of snow cover permitting. This implies that the sites located on the higher elevations are sampled only from late spring to early autumn.Quality Control
The sampling transects were georeferenced using a Garmin eTrex Legend GPS (WGS 84 Datum) with an accuracy of ±5 m. We also used colour digital orthophotographs provided by the Andalusian Cartography Institute and GIS (ArcGIS 9.2; ESRI, Redlands, California, USA) to verify that the geographical coordinates of the transect were correct (Chapman and Wieczorek 2006). For the identification of the specimes several fields guides were used (De Juana and Varela 2000, Jonsson 2001). The scientific names were checked with database of the IOC World Bird List (v 5.52) (Gill and Donkster 2015). We also used the R package taxize (Chamberlain and Szocs 2013, Chamberlain et al. 2014) to verify the taxonomical classification. We also performed validation procedures (Chapman 2005a, 2005b) (geopraphic coordinate format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset) with DARWIN_TEST (v3.2) software (Ortega-Maqueda and Pando 2008).Method steps
- All data were stored in a normalized database (PostgreSQL) and incorporated into the Information System of Sierra Nevada Global-Change Observatory. Taxonomic and spatial validations were made on this database (see Quality-control description). A custom-made SQL view of the database was performed to gather occurrence data and other variables associated with occurrence data, specifically: • Birds Count: Number of individual recorded by the observer within transect (see Sampling description) • Distance: Distance of the contact (bird) to transect line. The distance is estimated by eye. The occurrence and measurement data were accommodated to fulfill the Darwin Core Standard (Wieczorek et al. 2009, 2012). We used Darwin Core Archive Validator tool (http://tools.gbif.org/dwca-validator/) to check whether the dataset meets Darwin Core specifications. The Integrated Publishing Toolkit (IPT v2.0.5) (Robertson et al. 2014) of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://www.gbif.es/ipt) was used both to upload the Darwin Core Archive and to fill out the metadata. The Darwin Core elements for the occurrence data included in the dataset are: occurrenceId, modified, language, basisOfRecord, institutionCode, collectionCode, catalogNumber, scientificName, kingdom, phylum, class, order, family, genus, specificEpithet, scientificNameAuthorship, continent, country, countryCode, stateProvince, county, locality, minimumElevationInMeters, maximumElevationInMeters, decimalLongitude, decimalLatitude, coordinateUncertaintyinMeters, geodeticDatum, recordedBy, day, month, year, EventDate. For the measurement data, the Darwin Core elements included were: occurrenceId, measurementID, measurementType, measurementValue, measurementAccuracy, measurementUnit, measurementDeterminedDate, measurementDeterminedBy, measurementMethod.
Taxonomic Coverages
This dataset includes a total of 27847 records of the order Passeriformes. There are 16 families represented in this dataset. Nearly one third of the specimens belong to the family Fringillidae. A total of 44 genera are represented in this collection, with Emberiza, Cyanistes, Turdus, Fringilla and Parus having the highest number of records (Figure 3). There are 70 taxa of this dataset included in the European Red List (BirdLife International 2015): 67 categorized as Least Concern; 2 Not evaluated, and 1 taxa considered as Vulnerable. According to Spanish Red List (Madroño et al. 2004), 3 taxa of this dataset are considered under Near Threatened category, 1 taxa as Vulnerable and 1 as Least Concern categories respectively
-
Avesrank: class
-
Aegithalidaerank: family
-
Alaudidaerank: family
-
Certhiidaerank: family
-
Cinclidaerank: family
-
Corvidaerank: family
-
Fringillidaerank: family
-
Laniidaerank: family
-
Motacillidaerank: family
-
Muscicapidaerank: family
-
Paridaerank: family
-
Passeridaerank: family
-
Phylloscopidaerank: family
-
Sittidaerank: family
-
Sturnidaerank: family
-
Sylviidaerank: family
-
Turdidaerank: family
-
Aegithalosrank: genus
-
Alaudarank: genus
-
Anthusrank: genus
-
Carduelisrank: genus
-
Certhiarank: genus
-
Cinclusrank: genus
-
Coccothraustesrank: genus
-
Corvusrank: genus
-
Cyanistesrank: genus
-
Emberizarank: genus
-
Erithacusrank: genus
-
Fringillarank: genus
-
Galeridarank: genus
-
Garrulusrank: genus
-
Hippolaisrank: genus
-
Laniusrank: genus
-
Lophophanesrank: genus
-
Loxiarank: genus
-
Lullularank: genus
-
Lusciniarank: genus
-
Miliariarank: genus
-
Monticolarank: genus
-
Motacillarank: genus
-
Muscicaparank: genus
-
Oenantherank: genus
-
Oriolusrank: genus
-
Parusrank: genus
-
Passerrank: genus
-
Periparusrank: genus
-
Petroniarank: genus
-
Phoenicurusrank: genus
-
Phylloscopusrank: genus
-
Picarank: genus
-
Prunellarank: genus
-
Pyrrhocoraxrank: genus
-
Regulusrank: genus
-
Saxicolarank: genus
-
Serinusrank: genus
-
Sittarank: genus
-
Spinusrank: genus
-
Sturnusrank: genus
-
Sylviarank: genus
-
Troglodytesrank: genus
-
Turdusrank: genus
Geographic Coverages
Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. covering more than 2000 km2 (Figure 1). The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12–16°C below 1500 m to 0°C above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude.
This mountain area comprises 27 habitat types from the Habitat Directive. Sierra Nevada protected area contains 72 animal species (44 breeding birds, 17 mammals, 5 invertebrates, 2 amphibians and 4 reptiles) and 20 plant species listed in the Annex II and/or in the Annex IV of Habitat or Bird directives. It is thus considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca 1996, Blanca et al. 1998, Cañadas et al. 2014).
Sierra Nevada has several legal protections: Biosphere Reserve MAB Committee UNESCO; Special Area of conservation (Natura 2000 network); Natural Park and National Park. The area includes 61 municipalities with more than 90, 000 inhabitants. The main economic activities are agriculture, tourism, cattle raising, beekeeping, mining, and skiing (Bonet el al. 2010).
Bibliographic Citations
- Aspizua R, Bonet FJ, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2010) El observatorio de cambio global de Sierra Nevada: hacia la gestión adaptativa de los espacios naturales. Ecosistemas 19(2): 56–68. http://www.revistaecosistemas.net/index.php/ecosistemas/article/view/46 -
- Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) (2012) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 1–112. -
- Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora RJ (Eds) (2014) Sierra Nevada Global-Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía, 112 pp. -
- Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology 18 (3): 881–890. doi: 10.1111/j.1365-2486.2011.02552.x -
- Barea-Azcón JM, Martín-Jaramillo J, López R (2012) Paseriformes y otras aves. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds). Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía. 86-87. -
- Barea-Azcón JM, Martín-Jaramillo J, López R (2014) Passerines and other birds. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds). Sierra Nevada Global Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía. 86-87. -
- Basset A, Los W. (2012) Biodiversity e-Science: LifeWatch, the European infrastructure on biodiversity and ecosystem research. Plant Biosystems 146 (4): 780-782. doi: 10.1080/11263504.2012.740091 -
- Björnsen A (Ed.) (2005) The GLOCHAMORE (Global Change and Mountain Regions) Research Strategy. Berne (Switzerland) and Vienna (Austria). Mountain Research Initiative Office and University of Vienna, 1–48. http://unesdoc.unesco.org/images/0014/001471/147170E.pdf -
- Blanca G (1996) Protección de la flora de Sierra Nevada (Granada y Almería). Conservación Vegetal 1: 6. -
- Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biological Conservation 85(3): 269–285. doi: 10.1016/S0006-3207(97)00169-9 -
- Bonet FJ, Pérez-Luque AJ, Moreno R, Zamora R (2010) Sierra Nevada Global Change Observatory. Structure and Basic Data. Environment Department (Andalusian Regional Government)–University of Granada, 1–48. http://refbase.iecolab.es/files/bonet/2010/2905_Bonet_etal2010.pdf -
- Bonet FJ, Aspizua-Cantón R, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2011) Sierra Nevada Observatory for monitoring global change: Towards the adaptive management of natural resources. In: Austrian MaB Comitee (Ed.) Biosphere Reserves in the mountains of the world. Excellence in the clouds? Austrian Academy of Sciences Press, Vienna, 48–52. -
- Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation 170: 282–291. doi: 10.1016/j.biocon.2013.12.007 -
- Chamberlain SA, Szöcs E (2013) taxize: taxonomic search and retrieval in R. F1000Research 2: 191. doi: 10.12688/f1000research.2-191.v2 -
- Chamberlain S, Szocs E, Boettiger C, Ram K, Bartomeus I, Baumgartner J (2014) taxize: Taxonomic information from around the web. R package version 0.3.0. https://github.com/ropensci/taxize -
- Chapman AD (2005a) Principles and Methods of Data Cleaning – Primary Species and Species-Occurrence Data, version 1.0. Global Biodiversity Information Facility, Copenhagen, 75 pp. http://www.gbif.org/orc/?doc_id=1262 -
- Chapman AD (2005b) Principles of Data Quality, version 1.0. Global Biodiversity Information Facility, Copenhagen, 61 pp. http://www.gbif.org/orc/?doc_id=1229 -
- Crick H (2004) The impact of climate change on birds. Ibis 146: 48-56. doi: 10.1111/j.1474-919X.2004.00327.x -
- De Juana E, Varela JM (2000) Guía de las Aves de España. Península, Baleares y Canarias. Lynx Edicions, Barcelona. -
- Garzón J (2012) Revisión histórica de la ornitología en Sierra Nevada. In: Garzón Gutiérrez J, Henares Civantos I (Eds) Las Aves de Sierra Nevada. Consejería de Agricultura, Pesca y Medio Ambiente de la Junta de Andalucía, Granada, 41-49. -
- Garzón J, Henares I (2012) Las Aves de Sierra Nevada. Consejería de Agricultura, Pesca y Medio Ambiente de la Junta de Andalucía, Granada. -
- Gill F, Donsker D (2015) IOC World Bird List (v 5.2). http://www.worldbirdnames.org [accessed June 10, 2015] doi: 10.14344/IOC.ML.5.2 -
- Gregory RD, Willis SG, Jiguet F, Voříšek P, Klvaňová A, van Strien A, Huntley B, Collingham YC, Couvet D, Green RE (2009) An indicator of the impact of climatic change on European bird populations. PLoS ONE 4, e4678. doi: 10.1371/journal.pone.0004678 -
- Gutiérrez R, De Juana E, Lorenzo JA (2012) Lista de las aves de España. Versión online 1.0: nombres castellano, científico e inglés. SEO/BirdLife. http://www.seo.org/wp-content/uploads/2012/10/Lista_-Aves_Espana_2012.pdf -
- Hoffmann A, Penner J, Vohland K, Cramer W, Doubleday R, Henle K, Kõljalg U, Kühn I, Kunin W, Negro JJ, Penev L, Rodríguez C, Saarenmaa H, Schmeller D, Stoev P, Sutherland W, Ó Tuama É, Wetzel F, Häuser CL (2014) The need for an integrated biodiversity policy support process – Building the European contribution to a global Biodiversity Observation Network (EU BON). Nature Conservation 6: 49–65. doi: 10.3897/natureconservation.6.6498 -
- Jonsson L (2001) Guía de aves de Europa, con el Norte de África y el Próximo Oriente. Ediciones Omega. -
- Madroño A, González C, Atienza JC (2004) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife. Madrid-España, 452 pp. -
- Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology and Evolution, 25: 574–582. doi: 10.1016/j.tree.2010.06.016 -
- Müller F, Gnauck A, Wenkel KO, Schubert H, Bredemeier M (2010) Theoretical demands for long-term ecological research and the management of long-term data sets. In: Müller F, Baessler C, Schubert H, Klotz S (Eds) Long-term ecological research. Between theory and application. Springer, New York. 11-25. doi: 10.1007/978-90-481-8782-9_2 -
- Ortega-Maqueda I, Pando F (2008) DARWIN_TEST v3.2: Una aplicación para la validación y el chequeo de los datos en formato Darwin Core 1.2 or Darwin Core 1.4. Unidad de Coordinación de GBIF.ES, CSIC. Ministerio de Educación y Ciencia. Madrid, Spain, http://www.gbif.es/Darwin_test/Darwin_test.php -
- Pacifi M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HT, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Climate Change 5: 215-224. doi: 10.1038/nclimate2448 -
- Pearce-Higgins JW, Green RE (2014) Birds and Climate Change. Impacts and conservation responses. Cambridge University Press. United Kingdom. -
- Pearce-Higgins JW, Eglington SN, Martay B, Chamberlain DE (2015) Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 84(4): 943–954. doi: 10.1111/1365-2656.12364 -
- Pérez-Luque AJ, Bonet FJ, Zamora R (2012) The Wiki of Sierra Nevada Global Change Observatory. Bulletin of the Ecological Society of America 93(3): 239–240. doi: 10.1890/0012-9623-93.3.239 -
- Pérez-Luque AJ, Bonet FJ, Benito B, Zamora R (2013) Caracterización ambiental de los robledales de Quercus pyrenaica Willd. de Sierra Nevada. In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013 -
- Pérez-Pérez R, Bonet FJ, Pérez-Luque AJ, Zamora R (2012) Linaria: a set of information management tools to aid environmental decision making in Sierra Nevada (Spain) LTER site. In: Long Term Ecological Research (LTER) (Ed.) Proceedings of the 2013 LTER All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales. LTER, Estes Park - Colorado, USA. -
- Pleguezuelos JM (1991) Evolución histórica de la avifauna nidificante en el SE de la Península Ibérica (1850-1985). Consejería de Cultura y Medio Ambiente. Junta de Andalucia. 61 pp. -
- Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J, Braak K, Otegui J, Russell L, Desmet P (2014) The GBIF Integrated Publishing Toolkit: Facilitating the Efficient Publishing of Biodiversity Data on the Internet. PLoS ONE 9(8): e102623, doi: 10.1371/journal.pone.0102623 -
- Sanz JJ (2002) Climate change and birds: Have their ecological consequences already been detected in the Mediterranean region? Ardeola 49(1): 109-120. -
- Schaaf T (2009) Mountain Biosphere Reserves–A People Centred Approach that also Links Global Knowledge. Sustainable Mountain Development 55: 13–15. http://lib.icimod.org/record/26505/files/c_attachment_601_5624.pdf -
- Verner J (1985) Assessment of counting techniques. In: Current Ornithology 2: 247-302. Springer US. doi: 10.1007/978-1-4613-2385-3_8 -
- Wieczorek J, Döring M, De Giovanni R, Robertson T, Vieglais D (2009) Darwin Core Terms: A quick reference guide. http://rs.tdwg.org/dwc/terms/ -
- Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7(1): e29715. doi: 10.1371/journal.pone.0029715 -
- Zamora R, Camacho I (1984) Evolución estacional de la comunidad de aves en un robledal de Sierra Nevada. Doñana Acta Vertebrata 11: 129–150. -
- Zamora R (1987a) Dinámica temporal y selección de hábitat de los passeriformes de la alta montaña de Sierra Nevada (Granada). PhD thesis, Granada, Spain: University of Granada. -
- Zamora R (1987b). Variaciones altitudinales en la composición de las comunidades nidificantes de aves de Sierra Nevada. Doñana Acta Vertebrata 14: 83–106. -
- Zamora R (1988a) Composición y estructura de la comunidad de Passeriformes de la alta montaña de Sierra Nevada. Ardeola 35: 197–220. -
- Zamora R (1988b) Estructura morfológica de una comunidad de Passeriformes de alta montaña (Sierra Nevada, SE de España). Ardeola 35: 71–95. -
- Zamora R (1990) Seasonal variations of a passerine community in a mediterranean high-mountain. Ardeola 37: 219–228. -
- Zamora R, Bonet FJ (2011) Programa de Seguimiento del Cambio Global en Sierra Nevada: ciencia y tecnología para la gestión adaptativa. Boletín de la RED de seguimiento del cambio global en Parques Nacionales 1: 18–24. http://reddeparquesnacionales.mma.es/parques/rcg/html/rcg_boletin_01.htm -
- Zamora R, Barea-Azcón JM (2015) Long-Term changes in mountain passerine bird communities in the Sierra Nevada (southern Spain): A 30-year case study. Ardeola 62(1): 3-18. doi: 10.13157/arla.62.1.2015.3 -
Contacts
José Miguel Barea-Azcónoriginator
position: Researcher
Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía)
C/ Joaquina Eguaras 10
Granada
18013
ES
email: jbarea@agenciamedioambienteyagua.es
Antonio Jesús Pérez-Luque
originator
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Telephone: +34 958 249748
email: ajperez@ugr.es
userId: http://scholar.google.com/citations?user=_2VwSg0AAAAJ
Antonio Jesús Pérez-Luque
metadata author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Telephone: +34 958 249748
email: ajperez@ugr.es
userId: http://scholar.google.com/citations?user=_2VwSg0AAAAJ
Antonio Jesús Pérez-Luque
author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Telephone: +34 958 249748
email: ajperez@ugr.es
userId: http://scholar.google.com/citations?user=_2VwSg0AAAAJ
Franciso Javier Bonet-García
author
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Telephone: +34 958 249748
email: fjbonet@ugr.es
userId: http://scholar.google.com/citations?user=UEtD9nQAAAAJ&hl=es
José Miguel Barea-Azón
author
position: Researcher
Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía)
C/ Joaquina Eguaras 10
Granada
18013
ES
email: jbarea@agenciamedioambienteyagua.es
Dolores Álvarez-Riuz
author
position: Master's Student
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Regino Jesús Zamora Rodríguez
author
position: Professor. Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
Granada
18071
Granada
ES
email: rzamora@ugr.es
homepage: http://ecologia.ugr.es/pages/personal/profesorado/regino
userId: http://scholar.google.com/citations?user=zsEqa94AAAAJ&hl=es
Antonio Jesús Pérez-Luque
administrative point of contact
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
Telephone: +34 958 249748
email: ajperez@ugr.es
userId: http://scholar.google.com/citations?user=_2VwSg0AAAAJ
Francisco Javier Bonet García
administrative point of contact
position: Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
Granada
18006
ES
email: fjbonet@ugr.es
userId: http://scholar.google.com/citations?user=UEtD9nQAAAAJ&hl=es
José Miguel Barea-Azcón
administrative point of contact
position: Researcher
Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía)
C/ Joaquina Eguaras 10
Granada
18013
email: jbarea@agenciamedioambienteyagua.es