cariaco-phytoplankton
Citation
Troccoli L, Diaz R, Subero S, Astor Y, Varela R, Rueda-Roa D, Klein E, Muller-Karger F (2018) Phytoplankton occurrence and density from the Cariaco Basin (1995-2017). https://doi.org/10.15468/tigosm accessed via GBIF.org on 2024-12-14.Description
Since November 1995, the CARIACO Ocean Time Series program has been studying the relationship between surface primary production (carbon fixation rates by photosynthesis of planktonic algae), regional hydrography, physical forcing variables (such as the wind), and the settling flux of particulate organic carbon in the Cariaco Basin. This tectonic depression, located on the continental shelf of Venezuela, shows marked seasonal and interannual variation in hydrography and primary production induced in part by the regular migration of the Intertropical Convergence Zone (ITCZ). The Cariaco Basin hydrography is affected by North-Atlantic gyre-scale processes, including dispersal of Subtropical Underwater and western boundary current variability, cross-equatorial flow of water masses (Wust, 1964; Muller-Karger et al., 1989), wind-driven upwelling compounded by geostrophic circulation (Richards, 1975; Muller-Karger and Aparicio-Castro, 1994i), ventilation forced by Caribbean Sea eddies (Astor et al., 2003), and river discharge (Yarincik et al., 2000; Lorenzoni, et al. 2009). Due to its restricted circulation and high primary production, the basin is anoxic below ~250 m (Muller-Karger et al., 2001; 2010). In the late 1990's and early 2000's, CARIACO observations measured annual primary production rates of more than 500 gC/m²y, of which over 15-20% was generated by events lasting one month or less. Since 2004 there has been a decrease in primary production rates (annual averages of less than 400 gC/m²y). Still, the annual primary production rates in the Cariaco Basin are comparable to rates estimated using time series observations for Monterey Bay (460 gC/m² y; Chavez, 1996), and higher than rates estimated for Georges Bank, the New York Shelf, and the Oregon Shelf (380, 300, and 190 gC/m² y, respectively; Walsh, 1988). Primary production and vertical particulate organic matter fluxes in the Cariaco Basin are higher than those observed at the oligotrophic BATS and HOT locations (Karl et al., 2001; Steinberg et al., 2001; Thunell et al., 2007). The Basin also experiences sedimentological events caused by earthquakes (Thunell et al., 1999; Lorenzoni et al., 2012) and coastal flooding (Percy et al., 2008; Lorenzoni et al., 2009). All of these phenomena can influence the sediments.Sampling Description
Study Extent
Cariaco Trench, Southern CaribbeanSampling
The CARIACO program was established in November 1995 through sponsorship of the National Science Foundation (NSF) and Venezuela's Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT). This long tern ocean time series joint effort has involved five major Venezuelan institutions and three universities in the U.S. The infrastructure is also a contribution to the International Geosphere-Biosphere Programme (IGBP), Land-Ocean Interactions in the Coastal Zone Program (LOICZ). Monthly oceanographic cruises to the CARIACO station (10.5° N, 64.67° W) have been conducted since November 1995 to examine the hydrography, primary production, and settling flux of particulate material. We use the 75-foot R/V Hermano Gines of the Fundación La Salle de Ciencias Naturales (FLASA) located on Margarita Island, Venezuela. Water is collected using a rosette ensemble equipped with twelve 8-lt. bottles and a CTD (conductivity-temperature-depth meter); the CTD also has an oxygen sensor, a fluorometer for chlorophyll-a estimates, and a transmissometer. Data are read out real-time on a computer screen on board the ship as we lower the rosette ensemble to approximately 1,380 m, the bottom of the Cariaco Basin. Water samples are analyzed for various parameters including phytoplankton biomass, dissolved and particulate nutrient and carbon concentration, and primary productivity rates. We also measure total bacterial production. Winds are measured at Santiago Mariño airport (10.9°N 63.96°W) and at the Meteorological station of La Salle (10.54°N, 64.06°W, height 3m). The data collected through the CARIACO ocean time series project is available freely through this web page and through the Ocean Carbon and Biogeochemistry (OCB) Data Management Office (DMO) at WHOI (http://ocb.whoi.edu/cariaco.html). Data and description of the CARIACO program is also available in Spanish at http://cariaco.intecmar.usb.ve/ To measure the flux of settling particles, we use five automated sediment traps placed at 150, 225, 410, 810, and 1210 m on a mooring. These funnel-shaped traps are synchronized to collect samples over 2 week periods into a series of jars. The traps are retrieved and re-deployed every 6 months (May and November), and samples are used to estimate carbonate, organic carbon, nitrogen, and biogenic silica fluxes and various other geochemical parameters. To measure currents at the CARIACO ocean time series station, we use a Lowered Acoustic Doppler Current Profiler (LADCP) which is deployed during each monthly cruise. The LADCP profiles the water column between 0 and 400m; below 400m there is not enough backscatter to produce a good signal (Virmani and Weisberg, 2009). see http://imars.marine.usf.edu/pubs/CARIACO_Methods_Manual.pdfQuality Control
see http://imars.marine.usf.edu/pubs/CARIACO_Methods_Manual.pdfMethod steps
Taxonomic Coverages
Phytoplankton from 0-100m
-
Acanthoica sp.
-
Acanthoica quattrospina
-
Achnanthes sp.
-
Akashiwo sanguinea
-
Alexandrium cohorticula
-
Alexandrium monilatum
-
Alexandrium sp.
-
Alexandrium tamarense
-
Amphidinium klebsii
-
Amphidinium schroederi
-
Amphidinium sp.
-
Amphidinium turbo
-
Amphisolenia bidentata
-
Amphisolenia palaeotheroides
-
Amphora laevis
-
Amphora lineata
-
Amphora sp.
-
Anabaena sp.
-
Anacystis sp.
-
Anoplosolenia brasiliensis
-
Anthosphaera robusta
-
Asterionella japonica
-
Asterionellopsis glacialis
-
Asterionellopsis kariana
-
Asterionellopsis sp.
-
Asterodinium sp.
-
Asterodinium spinosum
-
Asterolampra sp.
-
Asteromphalus flabellatus
-
Bacteriastrum comosum
-
Bacteriastrum delicatulum
-
Bacteriastrum elongatum
-
Bacteriastrum hyalinum
-
Bacteriastrum sp.
-
Bacterosira sp.
-
Balechina coerulea
-
Bellerochea malleus
-
Bellerochea sp.
-
Biddulphia cf. alternans
-
Bleakeleya notata
-
Blepharocysta splendor-maris
-
Braarudosphaera bigelowii
-
Brachidinium capitatum
-
Brachidinium sp.
-
Brachiomonas sp.
-
Caeratium pavillardi
-
Calcidiscus leptoporus
-
Calcidiscus sp.
-
Calciopappus caudatus
-
Calciosolenia murrayi
-
Calyptrolithina sp.
-
Calyptrolithophora sp.
-
Calyptrophora sp.
-
Calyptrosphaera sp.
-
Calyptrosphaera sphaerodidea
-
Campylodiscus sp.
-
Campylosira cymbelliformis
-
Centrodinium maximum
-
Centrodinium sp.
-
Cerataulina bergonii
-
Cerataulina pelagica
-
Cerataulus sp.
-
Ceratium azoricum
-
Ceratium belone
-
Ceratium breve
-
Ceratium bucephalum
-
Ceratium candelabrum
-
Ceratium carriense
-
Ceratium dens
-
Ceratium falcatiforme
-
Ceratium falcatum
-
Ceratium furca
-
Ceratium fusus
-
Ceratium gibberum
-
Ceratium horridum
-
Ceratium humile
-
Ceratium karstenii
-
Ceratium kofoidii
-
Ceratium lineatum
-
Ceratium longinum
-
Ceratium longipes
-
Ceratium macroceros
-
Ceratium symmetricum
-
Ceratium teres
-
Ceratium trichoceros
-
Ceratium tripos
-
Ceratocorys horrida
-
Ceratolithus cristatus
-
Ceratoperidinium falcatum
-
Chaetoceros affinis
-
Chaetoceros anastomosans
-
Chaetoceros atlanticus
-
Chaetoceros breve
-
Chaetoceros castracanei
-
Chaetoceros cf. holsaticus
-
Chaetoceros cf. neglectus
-
Chaetoceros coarctatus
-
Chaetoceros compressus
-
Chaetoceros concavicornis
-
Chaetoceros constrictus
-
Chaetoceros convolutus
-
Chaetoceros costatus
-
Chaetoceros curvisetus
-
Chaetoceros dadayi
-
Chaetoceros danicus
-
Chaetoceros debilis
-
Chaetoceros decipiens
-
Chaetoceros diadema
-
Chaetoceros dichaeta
-
Chaetoceros didymus
-
Chaetoceros fallax
-
Chaetoceros gracilis
-
Chaetoceros holsaticus
-
Chaetoceros laciniosus
-
Chaetoceros lauderi
-
Chaetoceros levis
-
Chaetoceros lorenzianus
-
Chaetoceros messanensis
-
Chaetoceros neglectus
-
Chaetoceros pelagicus
-
Chaetoceros pendulus
-
Chaetoceros peruvianus
-
Chaetoceros protuberans
-
Chaetoceros pseudocurvisetum
-
Chaetoceros radicans
-
Chaetoceros socialis
-
Chaetoceros sp.
-
Chaetoceros sp. -2
-
Chaetoceros sp. -3
-
Chaetoceros sp. -crossed setae
-
Chaetoceros sp. -Z
-
Chaetoceros spp.
-
Chaetoceros subsecundus
-
Chaetoceros subtilis
-
Chaetoceros tenuissimus
-
Chaetoceros teres
-
Chaetoceros tetrastichon
-
Chaetoceros tortissimus
-
Chattonella sp.
-
chlorophyte
-
Chroococcus sp.
-
Chrysochromulina sp.
-
Cladopyxis setifera
-
Cladopyxis sp.
-
Climacodium frauenfeldianum
-
Climacodium sp.
-
Climacosphenia sp.
-
coccolithophorid
-
Cocconeis sp.
-
Cochlodinium constrictum
-
Cochlodinium faurei
-
Cochlodinium polykrikoides
-
Cochlodinium sp.
-
Cochlodinium strangulatum
-
Cochlodinium virescens
-
Corethron hystrix
-
Coronosphaera mediterranea
-
Corythodinium sp.
-
Coscinodiscus centralis
-
Coscinodiscus excentricus
-
Coscinodiscus granii
-
Coscinodiscus nitidus
-
Coscinodiscus perforatus
-
Coscinodiscus sp.
-
Coscinodiscus wailesii
-
Coscinosira polychorda
-
Coscinosira sp.
-
Crucigenia sp.
-
cyanobacteria -colonial
-
cyanobacteria -filaments
-
cyanobacterias
-
Cyclolithella ferrazae
-
Cyclolithella sp.
-
Cyclotella sp.
-
Cyclotella striata
-
Cylindrotheca closterium
-
Dactyliosolen fragilissimus
-
Dactyliosolen mediterraneus
-
Dactyliosolen sp.
-
Desmidium sp.
-
Detonula pumila
-
diatom -centric
-
diatom -centric paired
-
diatom -centric small
-
diatom -large pennate
-
diatom -small
-
diatoms
-
Dictyocha fibula
-
dinoflagellate -A
-
dinoflagellate -armored
-
dinoflagellate -armored chain
-
dinoflagellate -naked
-
dinoflagellate -naked 2
-
dinoflagellate -naked internal star
-
dinoflagellate -naked large
-
dinoflagellates
-
Dinophysis acuminata
-
Dinophysis caudata
-
Dinophysis cf. sacculus
-
Dinophysis exigua
-
Dinophysis hastata
-
Dinophysis okamurae
-
Dinophysis ovum
-
Dinophysis sp.
-
Diploneis bombus
-
Diploneis crabro
-
Diploneis sp.
-
Diplopsalis lenticula
-
Diplopsalis rotunda
-
Discosphaera tubifer
-
Dissodinium gerbaultii
-
Distephanus sp.
-
Ditylum brightwellii
-
Dunaliella sp.
-
Ebria sp.
-
Ebria tripartita
-
Emiliana sp.
-
Emiliania huxleyi
-
Entomoneis alata
-
Erythropsidinium sp.
-
Eucampia cornuta
-
Eucampia groenlandica
-
Eucampia zodiacus
-
Eunotia sp.
-
Eutreptia sp.
-
Eutreptiella eupharyngea
-
Eutreptiella gymnastica
-
Eutreptiella sp.
-
Exuviella sp.
-
flagellate
-
Fragilaria sp.
-
Fragilariopsis cf. oceanica
-
Fragilariopsis sp.
-
Fragilidium sp.
-
Glenodinium sp.
-
Gloeocapsa sp.
-
Gloeotrichia echinulata
-
Goniodoma polyedricum
-
Goniodoma sp.
-
Gonyaulax apiculata
-
Gonyaulax diegensis
-
Gonyaulax digitale
-
Gonyaulax fragilis
-
Gonyaulax minuta
-
Gonyaulax polygramma
-
Gonyaulax sousae
-
Gonyaulax sp.
-
Gonyaulax spinifera
-
Gonyaulax turbynei
-
Grammatophora marina
-
Grammatophora serpentina
-
Grammatophora sp.
-
Guinardia cylindrus
-
Guinardia delicatula
-
Guinardia flaccida
-
Guinardia sp.
-
Guinardia striata
-
Gymnodinium catenatum
-
Gymnodinium cf. impudicum
-
Gymnodinium cf. mikimotoi
-
Gymnodinium conicum
-
Gymnodinium flavum
-
Gymnodinium gelbum
-
Gymnodinium gibbera
-
Gymnodinium impudicum
-
Gymnodinium mirabile
-
Gymnodinium mitratum
-
Gymnodinium ochraceum
-
Gymnodinium punctatum
-
Gymnodinium rotundatum
-
Gymnodinium rubrum
-
Gymnodinium sanguineum
-
Gymnodinium scopulosum
-
Gymnodinium sp.
-
Gymnodinium sp. large
-
Gymnodinium sp. -large
-
Gymnodinium sp. -small
-
Gymnodinium splendens
-
Gymnodinium spp.
-
Gymnodinium variabile
-
Gyrodinium aff. grave
-
Gyrodinium biconicum
-
Gyrodinium cf. aciculatum
-
Gyrodinium fissum
-
Gyrodinium foliaceum
-
Gyrodinium fulvum
-
Gyrodinium fusiforme
-
Gyrodinium lachryma
-
Gyrodinium nasutum
-
Gyrodinium pingue
-
Gyrodinium sp.
-
Gyrodinium sp.
-
Gyrodinium sp. -3
-
Gyrodinium spp.
-
Gyrodinium spirale
-
Gyrodinium striatissimum
-
Gyrodinium varians
-
Gyrodinium virgatum
-
Gyrosigma sp.
-
Halopappus sp.
-
Haslea wawrikae
-
Helicosphaera hyalina
-
Helicosphaera sp.
-
Helicotheca tamesis
-
Helladosphaera cornifera
-
Helladosphaera sp.
-
Hemiaulus hauckii
-
Hemiaulus heibergii
-
Hemiaulus membranaceus
-
Hemiaulus sinensis
-
Hemidinium sp.
-
Heterocapsa sp.
-
Heterocapsa triquetra
-
Histioneis sp.
-
Histioneis tubifera
-
Johannesbaptistia pellucida
-
Johannesbaptistia sp.
-
Katodinium sp.
-
Lauderia annulata
-
Lauderia borealis
-
Lauderia shroederii
-
Leptocylindrus danicus
-
Leptocylindrus mediterraneus
-
Leptocylindrus minimus
-
Licmophora abbreviata
-
Licmophora tenuis
-
Lingulodinium polyedra
-
Lioloma pacificum
-
Lioloma sp.
-
Lyngbya birgei
-
Lyngbya sp.
-
Lyrella lyra
-
Mastogloia erythraea
-
Melosira moniliformis
-
Melosira sp.
-
Melosira sp.
-
Merismopedia sp.
-
Mesodinium rubrum
-
Mesoporos perforatus
-
Meuniera membranacea
-
Michaelsarsia adriaticus
-
Michaelsarsia elegans
-
Microcystis aeruginosa
-
Miraltia sp.
-
Murrayella biconica
-
Myrionecta rubra
-
Navicula brevis
-
Navicula cancellata
-
Navicula cf. directa
-
Navicula crabro
-
Navicula distans
-
Navicula hennedyi
-
Navicula lyra
-
Navicula membranacea
-
Navicula septentrionalis
-
Navicula sp.
-
Navicula spp.
-
Navicula yarrensis
-
Nematodinium sp.
-
Neostreptotheca sp.
-
Nitzschia angularis
-
Nitzschia cf. fontifuga
-
Nitzschia cf. sicula
-
Nitzschia fluminensis
-
Nitzschia insignis
-
Nitzschia lanceolata
-
Nitzschia longissima
-
Nitzschia paradoxa
-
Nitzschia recta
-
Nitzschia rostrata
-
Nitzschia sicula
-
Nitzschia sigma
-
Nitzschia socialis
-
Nitzschia sp.
-
Nitzschia spp.
-
Noctiluca miliaris
-
Noctiluca scintillans
-
Odontella aurita
-
Odontella longicruris
-
Odontella mobiliensis
-
Odontella regia
-
Odontella sinensis
-
Odontella sp.
-
Oolithotus fragilis
-
Ophiaster hydroideus
-
Ophiaster sp.
-
Ornithocercus magnificus
-
Ornithocercus quadratus
-
Ornithocercus sp.
-
Ornithocercus steinii
-
Oscillatoria sp.
-
Oxyphysis sp.
-
Oxytoxum elegans
-
Oxytoxum elongatum
-
Oxytoxum gracile
-
Oxytoxum laticeps
-
Oxytoxum longiceps
-
Oxytoxum milneri
-
Oxytoxum obliquum
-
Oxytoxum reticulatum
-
Oxytoxum sceptrum
-
Oxytoxum scolopax
-
Oxytoxum sp.
-
Oxytoxum sphaeroideum
-
Oxytoxum tesselatum
-
Oxytoxum viride
-
Pandorina sp.
-
Papposphaera sp.
-
Paralia sulcata
-
Peridinium quinquecorne
-
Periphyllophora mirabilis
-
Phaeodactylum tricornutum
-
Phalacroma favus
-
Phalacroma ovum
-
Phalacroma scrobiculatum
-
Phalacroma sp.
-
Pinnunavis yarrensis
-
Plagiogramma sp.
-
Plagioselmis sp.
-
Plagiotropis seriata
-
Plagiotropis sp.
-
Planktoniella sol
-
Pleurosigma affine
-
Pleurosigma angulatum
-
Pleurosigma formosum
-
Pleurosigma lineare
-
Pleurosigma rigidum
-
Pleurosigma sp.
-
Podocystis adriatica
-
Podolampas bipes
-
Podolampas elegans
-
Podolampas palmipes
-
Podolampas sp.
-
Podolampas spinifer
-
Polykrikos sp.
-
Pontosphaera discopora
-
Porosira sp.
-
Proboscia alata
-
Pronoctiluca phaeocysticola
-
Pronoctiluca spinifera
-
Prorocentrum balticum
-
Prorocentrum compressum
-
Prorocentrum concavum
-
Prorocentrum gracile
-
Prorocentrum mexicanum
-
Prorocentrum micans
-
Prorocentrum minimum
-
Prorocentrum rostratum
-
Prorocentrum scutellum
-
Prorocentrum sp.
-
Prorocentrum triestinum
-
Protoperidinium avellana
-
Protoperidinium breve
-
Protoperidinium brevipes
-
Protoperidinium cerasus
-
Protoperidinium cf. steinii
-
Protoperidinium conicoides
-
Protoperidinium depressum
-
Protoperidinium diabolum
-
Protoperidinium divergens
-
Protoperidinium globulus
-
Protoperidinium grande
-
Protoperidinium hirobis
-
Protoperidinium latum
-
Protoperidinium leonis
-
Protoperidinium minutum
-
Protoperidinium mite
-
Protoperidinium murrayi
-
Protoperidinium nudum
-
Protoperidinium oceanicum
-
Protoperidinium okamurae
-
Protoperidinium orbiculare
-
Protoperidinium ovatum
-
Protoperidinium pellucidum
-
Protoperidinium pentagonum
-
Protoperidinium pyriforme
-
Protoperidinium quarnerense
-
Protoperidinium quinquecorne
-
Protoperidinium roseum
-
Protoperidinium rotundatum
-
Protoperidinium sp.
-
Protoperidinium sp. -2
-
Protoperidinium spinifera
-
Protoperidinium steinii
-
Protoperidinium subinerme
-
prymnesiophyta
-
Pseliodinium vaubanii
-
Pseudoeunotia doliolus
-
Pseudoguinardia recta
-
Pseudo-nitzschia cf. lineola
-
Pseudo-nitzschia pseudodelicatissima
-
Pseudo-nitzschia pungens
-
Pseudo-nitzschia seriata
-
Pseudo-nitzschia sp.
-
Pseudo-nitzschia subfraudulenta
-
Pseudosolenia calcar-avis
-
Pyramimonas sp.
-
Pyrocystis elegans
-
Pyrocystis gerbaultii
-
Pyrocystis hamulus
-
Pyrocystis lunula
-
Pyrocystis noctiluca
-
Pyrocystis obtusa
-
Pyrocystis robusta
-
Pyrodinium bahamense
-
Pyrophacus horologium
-
Rhabdosphaera claviger
-
Rhizosolenia acicularis
-
Rhizosolenia acuminata
-
Rhizosolenia bergonii
-
Rhizosolenia calcaravis
-
Rhizosolenia castracanei
-
Rhizosolenia cylindrus
-
Rhizosolenia delicatula
-
Rhizosolenia hebetata
-
Rhizosolenia hyalina
-
Rhizosolenia imbricata
-
Rhizosolenia robusta
-
Rhizosolenia setigera
-
Rhizosolenia sp.
-
Rhizosolenia styliformis
-
Rhodomonas marina
-
Rhodomonas sp.
-
Schizothrix calcicola
-
Schizothrix sp.
-
Schroederella delicatula
-
Schroederella sp.
-
Scrippsiella sp.
-
Scrippsiella spinifera
-
Scrippsiella subsalsa
-
Scrippsiella trochoidea
-
Skeletonema costatum
-
Sphaerodinium javanicum
-
Staurastrum sp.
-
Stauroneis constricta
-
Stelladinium sp.
-
Stephanopyxis cf. nipponica
-
Stephanopyxis palmeriana
-
Stephanopyxis turris
-
Streptotheca thamensis
-
Striatella sp.
-
Striatella unipunctata
-
Surirella fastuosa
-
Surirella recedens
-
Synechococcus sp.
-
Synedra affinis
-
Synedra decipiens
-
Synedra fulgens
-
Synedra gaillonii
-
Synedra hennedyana
-
Synedra sp.
-
Syracolithus quadriperforatus
-
Syracosphaera florida
-
Syracosphaera histrica
-
Syracosphaera lamina
-
Syracosphaera pulchra
-
Syracosphaera rotula
-
Syracosphaera sp.
-
Teleaulax sp.
-
Tetraselmis sp.
-
Thalassionema bacillare
-
Thalassionema frauenfeldii
-
Thalassionema nitzschioides
-
Thalassionema sp.
-
Thalassiosira aestivalis
-
Thalassiosira anguste-lineata
-
Thalassiosira decipiens
-
Thalassiosira delicatula
-
Thalassiosira eccentrica
-
Thalassiosira gravida
-
Thalassiosira hyalina
-
Thalassiosira nordenskioldii
-
Thalassiosira rotula
-
Thalassiosira sp.
-
Thalassiosira sp. -3 small
-
Thalassiosira sp. -A
-
Thalassiosira sp. -B
-
Thalassiosira sp. -large B
-
Thalassiosira sp. -small
-
Thalassiosira sp. -X
-
Thalassiosira spp.
-
Thalassiosira subtilis
-
Thalassiothrix delicatula
-
Thalassiothrix longissima
-
Thalassiothrix mediterranea
-
Thoracosphaera heimii
-
Torodinium sp.
-
Trachelomonas sp.
-
Trichodesmium erythraeum
-
Trichodesmium thiebautii
-
Tripos azoricus
-
Tripos furca
-
Tripos fusus
-
Tripos gibberus
-
Tripos humilis
-
Tripos lineatus
-
Tripos massiliensis
-
Tripos minutus
-
Tripos pentagonus
-
Tripos praelongus
-
Tripos ranipes
-
Tripos schmidtii
-
Tripos symmetricum
-
Tripos trichoceros
-
Tripos vultur
-
Tropidoneis lepidoptera
-
Umbellosphaera irregularis
-
Umbellosphaera sp.
-
Umbilicosphaera sibogae
-
Zygosphaera hellenica
Geographic Coverages
The ocean time series study area is the Cariaco Basin; a large (∼160 km long, 70 km wide) and deep (∼1,400 m)basin, located on the Venezuelan continental shelf (Figure 1 and 2), occupying an area of approximately 11.200 km2. It is bound to the north by a sill connecting Margarita Island to Cabo Codera, at a mean depth of about 100 m with two channels breaching this sill (La Tortuga: ∼135 m and Centinela: ∼146 m). The basin is divided into two sub-basins, one eastern and one western, separated by a saddle of approximately 900m deep (Schubert, 1982).
The upper waters of the basin are in constant exchange with Caribbean waters through the channels, but the sill depth restricts any water exchange below 140m. The Cariaco Basin experiences marked seasonal upwelling (Richards, 1975; Muller-Karger et al., 2001), induced by the Trade winds, which blow more intensely during the first half of the year (February-May), with sustained measured speeds of (>6 m s-1) and an E NE direction. Between August-November, winds are weaker (<6 m s-1) and the direction varies, often associated with meteorological perturbations (depressions, hurricanes) that cross the Caribbean. During the last decade, 1996, 1997, 2001 and 2003 have been years of strong wind, while between the years 1997-2000 winds remained low (Figure 3). Since 2004 wind strength has remained below average historical values, which have affected the primary production of the area significantly. Variations in wind strength are tightly coupled with the hydrography of the region, and control the intensity of the upwelling. Because of the upwelling, which brings essential nutrients to surface waters, primary production rates are high. Figure shows satellite images of a typical upwelling in the Cariaco Basin (see caption for details). Much of the organic material produced in the upper water column remains ungrazed and sinks, generating a flux of particles between the surface and the deep basin. Sill restricts water motion and the lateral flux of material below about 140 m depth, making Cariaco a natural sediment trap within a continental shelf. Because the turnover of basin waters is slow, the decomposition of the sinking material leads to permanent anoxia below about 250m. Around this depth, at the oxic-anoxic interface, a unique environment exists. The interface harbors a rich microbial community mostly composed of chemoautrotrophs, which generate and transform organic material, and likely alter the flux and composition of particles that travel through the water column (Scranton et al., 2006).
Cariaco Basin (Rodrigo Lazo, USB)Because of these permanent anoxic conditions (no bioturbation), sediments accumulate at the bottom of the basin in varves (laminated sediments, Figure), providing a detailed record of annual to decadal scale change over several dozen millennia (Peterson et al., 2000; Haug et al., 2001). The lamina alternate between light and dark, corresponding respectively to the highly productive upwelling period and terrigenous material coming from the coast. The scientific community in general has recognized the importance of this highly detailed sedimentary record in the Cariaco Basin. However, in order to understand it and accurately interpret it, it is necessary to understand the seasonal changes that occur in the region, as well as the biogeochemistry of the water column.
Bibliographic Citations
Contacts
Digna Ruedaoriginator
University of South Florida
St. Petersburg
Florida
US
email: druedaro@mail.usf.edu
Digna Rueda
metadata author
position: Research Assistant
University of South Florida
St. Petersburg
Florida
US
email: druedaro@mail.usf.edu
Eduardo Klein
user
email: eklein@usb.ve
Digna Rueda
administrative point of contact
position: Research Assistant
University of South Florida
St. Petersburg
Florida
US
email: druedaro@mail.usf.edu
Eduardo Klein
administrative point of contact
position: Professor
Universidad Simón Bolívar
INTECMAR
Caracas
1080
Miranda
VE
email: eklein@usb.ve
userId: http://orcid.org/0000-0003-2935-7065