Characterizing bumble bee (Bombus) communities in the United States and assessing a conservation monitoring method
Citation
Strange J, Tripodi A, Ikerd H (2019). Characterizing bumble bee (Bombus) communities in the United States and assessing a conservation monitoring method. Version 1.2. USDA-ARS Pollinating Insect-Biology, Management, Systematics Research. Occurrence dataset https://doi.org/10.1002/ece3.4783 accessed via GBIF.org on 2024-12-14.Description
Occurrence records used in the Publication, "Characterizing bumble bee (Bombus) communities in the United States and assessing a conservation monitoring method"Sampling Description
Study Extent
In 2015 (26-Jun to 10-Aug), we conducted systematic surveys of bumble bees from 31 sites in 15 states (Fig 1). Survey efforts were focused on areas where bumble bees are important for agricultural production and over half of our collections occurred in agricultural landscapes with the majority of other collections being in suburban landscapes adjacent to agricultural areas.Sampling
At each site, a collection of approximately 100 foraging bees was taken in a single day between 10:00 and 18:00 local time. We only collected in good weather conditions defined as: temperature 15-35°C, no precipitation, <50% cloud cover, and wind speed <15km/hr. We conducted surveys using two or three collectors using aerial insect nests to capture bumble bees as they foraged on flowering plants for pollen or nectar. Collectors captured foraging bees until a total of 100 worker or male bees were taken at a site, where possible. In most cases, sites were defined as an agricultural field and the field margin directly surrounding the field. However, non-agricultural sites were defined as a patch of flowers not to exceed 5 hectares. Collectors conducted a random walk through the patch or field margins, collecting a bee, stopping to process the bee, then continuing to the next bee they encountered. Netted bees were placed in individual vials and chilled and then given a preliminary field species determination before being killed by freezing on dry ice, except for five sites where time constrains prohibited field identification. Frozen bees were transported back to the USDA-ARS- Pollinating Insect- Biology, Management and Systematics Research Unit in Logan, UT where field species identifications were verified or corrected using available taxonomic keys (J. Koch et al., 2012; Mitchell, 1962; P. H. Williams et al., 2014).Method steps
- Skip
Taxonomic Coverages
The most common of the 30 species encountered was B. impatiens, the common eastern bumble bee, which comprised 36.04% (n = 1172) of the bees encountered nationwide. Several species were represented by only one (B. vandykei) or two (B. flavidus, B. insularis, and B. melanopygus) individuals in the surveys.
-
Bombuscommon name: Bumbule bee rank: genus
Geographic Coverages
Systematic surveys of bumble bees from 31 sites in 15 states within the contiguous United States.
Bibliographic Citations
- Aizen M. A., Smith‐Ramírez C., Morales C. L., Vieli L., Sáez A., Barahona-Segovia R. M., Montalva J., Garibaldi L. A., Inouye D. W. Harder L. D. (2018). Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology. 00:1–7. - https://doi.org/10.1111/1365-2664.13121
- Arbetman, M. P., Meeus, I., Morales, C. L., Aizen, M. A., & Smagghe, G. (2013). Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biological Invasions, 15(3) 489-494. https://doi.org/10.1007/s10530-012-0311-0 - https://doi.org/10.1007/s10530-012-0311-0
- Bushmann, S. L., & Drummond, F. A. (2015). Abundance and diversity of wild bees (Hymenoptera: Apoidea) found in lowbush blueberry growing regions of downeast Maine. Environmental Entomology, 44(4), 975–989. - https://doi.org/10.1093/ee/nvv082
- Cameron, S. a, Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., & Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 662–667. - https://doi.org/10.1073/pnas.1014743108
- Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics. 11(4), 265-270. - https://doi.org/10.2307/4615964
- Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. (2006). Abundance-based similarity indices and their estimation when there are unseen species in samples, Biometrics. 62(2), 361–371. - https://doi.org/10.1111/j.1541-0420.2005.00489.x
- Colla, S. R., & Packer, L. (2008). Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation, 17(6), 1379–1391. - https://doi.org/10.1007/s10531-008-9340-5
- Federal Register (2016) Endangered and threatened wildlife and plants; 90 day findings on 29 petitions. Federal Register 81:14058-14072. -
- Federal Register (2017) Endangered and threatened wildlife and plants; endangered species status for Rusty Patched Bumble Bee. Federal Register 82:3186-3188. -
- Figueroa, L. L., & Bergey, E. A. (2015). Bumble bees (Hymenoptera: Apidae) of Oklahoma: past and present biodiversity. Journal of the Kansas Entomological Society, 88(4), 418–429. - https://doi.org/10.2317/0022-8567-88.4.418
- Goka, K., Okabe, K., Yoneda, M., & Niwa, S. (2001). Bumblebee commercialization will cause worldwide migration of parasitic mites. Molecular Ecology. 10(8), 2095-2099. - https://doi.org/10.1046/j.0962-1083.2001.01323.x
- Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391. - https://doi.org/10.1046/j.1461-0248.2001.00230.x
- Goulson, D. (2010). Bumblebees: their behaviour, ecology, and conservation. (Second Edition). Oxford: Oxford University Press. - https://doi.org/10.1016/j.tree.2003.08.002
- Goulson, D., Hanley, M. E., Darvill, B., Ellis, J. S., & Knight, M. E. (2005). Causes of rarity in bumblebees. Biological Conservation, 122(1), 1–8. - https://doi.org/10.1016/j.biocon.2004.06.017
- Goulson, D., Nicholls, E., Botias, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. https://doi.org/10.1126/science.1255957 - https://doi.org/10.1126/science.1255957
- Graystock, P., Yates, K., Evison, S. E. F., Darvill, B., Goulson, D., & Hughes, W. O. H. (2013). The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology, 50(5), 1207-1215. - https://doi.org/10.1111/1365-2664.12134
- Grixti, J. C., Wong, L. T., Cameron, S. A., & Favret, C. (2009). Decline of bumble bees (Bombus) in the North American Midwest. Biological Conservation, 142(1), 75–84. - https://doi.org/10.1016/j.biocon.2008.09.027
- Hatten, T. D., Strange, J. P., & Maxwell, J. M. (2015). Late-season survey of bumble bees along Canadian highways of British Columbia and Yukon Territories. Western North American Naturalist, 75(2), 170–180. - https://doi.org/10.3398/064.075.0205
- IUCN. (2017) The IUCN Red List of Threatened Species. Version 2017-3. <www.iucnredlist.org>. Downloaded on 23 March 2018. -
- Jackson, J. M., Pimsler, M. L., Oyen, K. J., Koch-Uhuad, J. B., Herndon, J. D., Strange, J. P., Dillon, M.D., Lozier, J. D. (2018). Distance, elevation, and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Molecular Ecology. 27(14), 2926-2942. - https://doi.org/10.1111/mec.14735
- Jacobson, M. M., Tucker, E. M., Mathiasson, M. E., & Rehan, S. M. (2018). Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biological Conservation, 217, 437–445. - https://doi.org/10.1016/j.biocon.2017.11.026
- Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M., … Pantoja, A. (2015). Climate change impacts on bumblebees converge across continents. Science, 349(6244), 177–180. - https://doi.org/10.1126/science.aaa7031
- Koch, J. B., Looney, C., Sheppard, W. S., & Strange, J. P. (2017). Patterns of population genetic structure and diversity across bumble bee communities in the Pacific Northwest. Conservation Genetics, 18(3), 1–14. - https://doi.org/10.1007/s10592-017-0944-8
- Koch, J. B., & Strange, J. P. (2012). The status of Bombus occidentalis and B . moderatus in Alaska with special focus on Nosema bombi incidence, 86(3), 212–220. -
- Koch, J., Strange, J., & Williams, P. (2012). Bumble Bees of the Western United States. USDA Forest Service Research Notes, 143. - https://doi.org/10.1603/0022-0493-99.2.443
- Lebuhn, G.; Droege, S.; Connor, E.F.; Gemmill-Herren, B.; Potts, S.G.; Minckley, R.L.; Griswold, T.; Jean, R.; Kula, E.; Roubik, D.W.; Cane, J.; Wright, K.W.; Frankie, G.; Parker, F. Detecting insect pollinator declines on regional and global scales. Conservation Biology. 2012(27) 113–120. -
- Lebuhn, G.; Droege, S.; Connor, E.F.; Gemmill-Herren, B.; Potts, S.G.; Minckley, R.L.; Jean, R.P.; Kula, E.; Roubik, D.W.; Wright, K.W.; Frankie, G.; Parker, F. Evidence based conservation: reply to Tepedino et al. Conserv. Biol. 2015(29) 283–285 -
- Lozier, J. D., Strange, J. P., & Koch, J. B. (2013). Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conservation Genetics. 14(5), 1099-1110. - https://doi.org/10.1007/s10592-013-0498-3
- Lozier, J. D., Strange, J. P., Stewart, I. J., & Cameron, S. A. (2011). Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Molecular Ecology, 20(23), 4870–88. - https://doi.org/10.1111/j.1365-294X.2011.05314.x
- Miller-Struttmann, N. E., Geib, J. C., Franklin, J. D., Kevan, P. G., Holdo, R. M., Ebert-May, D., … Galen, C. (2015). Functional mismatch in a bumble bee pollination mutualism under climate change. Science, 349(6255), 1541–1544. - https://doi.org/10.1126/science.aab0868
- Mitchell, T. B. (1962). Bees of the eastern United States. II. Chemistry & Biology (Vol. 152). - https://doi.org/10.1016/S1074-5521(98)90002-3
- Morales, C. L., Arbetman, M. P., Cameron, S. A., & Aizen, M. A. (2013). Rapid ecological replacement of a native bumble bee by invasive species. Frontiers in Ecology and the Environment, 11(10), 529–534. - https://doi.org/10.1890/120321
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., … Oksanen, M. J. (2018). Community Ecology Package. Retrieved from https://github.com/vegandevs/vegan/issues -
- Ratti, C. M., & Colla, S. R. (2010). Discussion of the presence of an eastern bumble bee species (Bombus impatiens Cresson) in western Canada. The Pan-Pacific Entomologist, 86(2), 29–31. - https://doi.org/10.3956/2009-19.1
- Tepedino, V.J.; Durham, S.; Cameron, S.A.; Goodell, K. Documenting bee decline or squandering scarce resources. Conserv. Biol. 2015(29) 280–282. -
- Tripodi, A. D., & Szalanski, A. L. (2015). The bumble bees (Hymenoptera: Apidae: Bombus) of Arkansas, fifty years later. Journal of Melittology, (50), 1. - https://doi.org/10.17161/jom.v0i50.4834
- U.S. Environmental Protection Agency. (2013) Level III ecoregions of the continental United States: Corvallis, Oregon, U.S. EPA – National Health and Environmental Effects Research Laboratory, map scale 1:7,500,000, https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states. Accessed 23 March 2018. -
- Velthuis, H. H. W., & van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37(4), 421–451. - https://doi.org/10.1051/apido:200601
- Williams, P. (2013). Bumble Bees of the World. - https://doi.org/10.1021/jf011062r
- Zayed, A. (2009). Bee genetics and conservation. Apidologie, 40(3), 237–262. - https://doi.org/10.1051/apido/2009026
- Zayed, A., & Packer, L. (2005). Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10742–10746. - https://doi.org/10.1073/pnas.0502271102
Contacts
James Strangeoriginator
position: Research Entomologist
USDA-ARS
5310 Old Main Hill
Logan
843225310
UT
US
Telephone: 4357970530
email: James.Strange@ars.usda.gov
userId: http://orcid.org/0000-0002-9612-6868
Amber Tripodi
originator
position: Research Entomologist
USDA-ARS Pollinating Insect-biology, Management, Systematics Research
5310 Old Main Hill
Logan
84322
Utah
US
email: amberdtripodi@gmail.com
homepage: http://www.ambertripodi.com
userId: http://orcid.org/0000-0001-7368-6638
Harold Ikerd
metadata author
position: Data Manager
USDA-ARS Pollinating Insect-biology, Management, Systematics Research
5310 Old Main Hill, BNR 244
Logan
843225310
UT
US
Telephone: 4352275711
email: harold.ikerd@ars.usda.gov
userId: http://orcid.org/0000-0001-5043-6484
Harold Ikerd
metadata author
position: Data Manager
USDA-ARS Pollinating Insect-biology, Management, Systematics Research
5310 Old Main Hill, BNR 244
Logan
843225310
UT
US
Telephone: 4352275711
email: harold.ikerd@ars.usda.gov
userId: http://orcid.org/0000-0001-5043-6484
James Strange
author
position: Research Entomologist
USDA-ARS
5310 Old Main Hill
Logan
843225310
UT
US
Telephone: 4357970530
email: James.Strange@ars.usda.gov
userId: http://orcid.org/0000-0002-9612-6868
Amber Tripodi
author
USDA-ARS
5310 Old Main Hill
Logan
843225310
Utah
US
Telephone: 4357970530
email: amberdtripodi@gmail.com
homepage: http://www.ambertripodi.com/
userId: http://orcid.org/0000-0001-7368-6638
James Strange
administrative point of contact
USDA-ARS
5310 Old Main Hill
Logan
843225310
UT
US
Telephone: 4357970530
email: James.Strange@ars.usda.gov
userId: http://orcid.org/0000-0002-9612-6868
Amber Tripodi
administrative point of contact
position: Research Entomologist
USDA-ARS
5310 Old Main Hill
Logan
843225310
Utah
US
Telephone: 4357970530
email: amberdtripodi@gmail.com
homepage: http://www.ambertripodi.com
userId: http://orcid.org/0000-0001-7368-6638