Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from United States.
Extracted from the Mendeley GBIF Public Library.

List of publications

  • Deblauwe V, Droissart V, Bose R, Sonké B, Blach-Overgaard A, Svenning J et al. (2016)

    Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics

    Global Ecology and Biogeography.

    Aim Species distribution modelling typically relies completely or partially on climatic variables as predictors, overlooking the fact that these are themselves predictions with associated uncertainties. This is particularly critical when such predictors are interpolated between sparse station data, such as in the tropics. The goal of this study is to provide a new set of satellite-based climatic predictor data and to evaluate its potential to improve modelled species–climate associations and transferability to novel geographical regions. Location Rain forests areas of Central Africa, the Western Ghats of India and South America. Methods We compared models calibrated on the widely used WorldClim station-interpolated climatic data with models where either temperature or precipitation data from WorldClim were replaced by data from CRU, MODIS, TRMM and CHIRPS. Each predictor set was used to model 451 plant species distributions. To test for chance associations, we devised a null model with which to compare the accuracy metric obtained for every species. Results Fewer than half of the studied rain forest species distributions matched the climatic pattern better than did random distributions. The inclusion of MODIS temperature and CHIRPS precipitation estimates derived from remote sensing each allowed for a better than random fit for respectively 40% and 22% more species than models calibrated on WorldClim. Furthermore, their inclusion was positively related to a better transferability of models to novel regions. Main conclusions We provide a newly assembled dataset of ecologically meaningful variables derived from MODIS and CHIRPS for download, and provide a basis for choosing among the plethora of available climate datasets. We emphasize the need to consider the method used in the production of climate data when working on a region with sparse meteorological station data. In this context, remote sensing data should be the preferred choice, particularly when model transferability to novel climates or inferences on causality are invoked.

    Keywords: Association test, CHIRPS, GLM, MODIS, MaxEnt, TRMM, WorldClim, ecological niche model, habitat suitability, null model


  • Hendricks S, Sesink Clee P, Harrigan R, Pollinger J, Freedman A, Callas R et al. (2016)

    Re-defining historical geographic range in species with sparse records: Implications for the Mexican wolf reintroduction program

    Biological Conservation 194 48-57.

    Reintroduction is often the only remaining option for recovery of extirpated species. According to the U.S. Endangered Species Act, species should be reintroduced to suitable habitats within their probable historical range. However, accurately defining historical range often proves difficult, especially for taxa with limited historical information, and may represent a significant impediment for successful recovery. Here, we combine ecological modeling methods with morphometric and phylogenetic data from museum specimens to define a more biologically realistic historical distribution. We apply this approach to the Mexican wolf (Canis lupus baileyi), the most endangered and genetically distinct wolf subspecies in the New World. Our model substantially increases the potential geographic range of the Mexican wolf to include areas in southern California and Baja California, areas not previously recognized as part of the historical range. Motivated by this prediction, we reanalyzed morphometric data and genetically typed the only historical specimen known from southern California, which was previously assigned to another wolf subspecies. We found that the specimen was in fact of pure Mexican wolf ancestry and fell within our predicted range for this subspecies. Our findings provide an impetus for reconsidering reintroduction sites for the Mexican wolf and highlight how critical taxonomic assignment can be to reintroduction programs and species recovery. Re-analysis of potential range in other extirpated species that have ranges defined by antiquated taxonomic approaches used on a limited number of specimens could enhance the success of future reintroduction programs and restore historical processes such as admixture that can preserve the adaptive legacy of endangered species.

    Keywords: Anthropogenic disturbance, Canis lupus baileyi, Distribution modeling, Historical range, Museum specimens, Reintroduction programs


  • Morales A, Villalobos F, Velazco P, Simmons N, Piñero D (2016)

    Environmental niche drives genetic and morphometric structure in a widespread bat

    Journal of Biogeography.

    Aim To explore whether environmental factors are correlated with genetic and morphometric differences in the widely distributed bat species Tadarida brasiliensis. Location North America and Central America. Methods We used an extensive sampling comprising 131 localities that represent heterogeneous environments across the Nearctic and Neotropical regions. Museum specimens were examined and 25 craniodental characters were recorded. Individuals were genotyped at one mitochondrial locus (mtDNA) and nine nuclear loci (nDNA). Clustering and phylogenetic analyses were used to identify differentiated groups. Environmental variables and PCA-env approaches were used to determine the climatic niche and to measure the niche overlap, equivalence and similarity between groups. Mantel tests between genetic groupings and environmental variables, dispersal costs, Euclidean geographical distances and niche overlap were performed. Results We identified six genetic groups within Central and North American T. brasiliensis based on nDNA. The most strongly differentiated group, in both nDNA and mtDNA, was located in central Mexico. Morphometric data showed that individuals from populations in Florida are slightly larger than the others. Niche overlap was detected among Neotropical groups but not among Nearctic groups. The currently recognized subspecies were not recovered as distinct groups with either genetic or morphometric data. Main conclusions Our approaches suggest that environmental niche variation may help shape the distribution of genetic variation across heterogeneous landscapes, particularly in widely distributed species. Environmental niche analyses suggest that genetic differences between migratory and non-migratory groups of T. brasiliensis may be promoted by climatic variation throughout the Nearctic and Neotropical regions. In addition, genetic and morphometric analyses do not support the current subspecies classification of T. brasiliensis in North and Central America, which should be abandoned.

    Keywords: Tadarida brasiliensis, ecological niche, genetic structure, morphometric, phylogeography, subspecies


  • Aguilar G, Blanchon D, Foote H P (2015)

    Queensland Fruit Fly Invasion of New Zealand: Predicting Area Suitability Under Future Climate Change Scenarios ‹ ePress

    Unitec ePress Perspectives in Biosecurity Research Series 2.

    The Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is consistently described as the most damaging pest to Australia’s horticulture industries with an annual economic cost averaging around $25.7 million from 2003 to 2008 . In this paper, and corresponding online map, the authors discuss the significant risk to New Zealand of invasion by this species; the potential effects of climate change on the distribution and impacts of invasive species are well known. This paper and eMedia employs species distribution modelling using Maxent to predict the suitability of New Zealand to the Queensland fruit fly based on known occurrences worldwide and Bioclim climatic layers

    Keywords: Invasive species, climate change, species distribu


  • Ahrends A, Hollingsworth P, Ziegler A, Fox J, Chen H, Su Y et al. (2015)

    Current trends of rubber plantation expansion may threaten biodiversity and livelihoods

    Global Environmental Change 34 48-58.

    The first decade of the new millennium saw a boom in rubber prices. This led to rapid and widespread land conversion to monoculture rubber plantations in continental SE Asia, where natural rubber production has increased >50% since 2000. Here, we analyze the subsequent spread of rubber between 2005 and 2010 in combination with environmental data and reports on rubber plantation performance. We show that rubber has been planted into increasingly sub-optimal environments. Currently, 72% of plantation area is in environmentally marginal zones where reduced yields are likely. An estimated 57% of the area is susceptible to insufficient water availability, erosion, frost, or wind damage, all of which may make long-term rubber production unsustainable. In 2013 typhoons destroyed plantations worth US$ >250 million in Vietnam alone, and future climate change is likely to lead to a net exacerbation of environmental marginality for both current and predicted future rubber plantation area. New rubber plantations are also frequently placed on lands that are important for biodiversity conservation and ecological functions. For example, between 2005 and 2010 >2500km2 of natural tree cover and 610km2 of protected areas were converted to plantations. Overall, expansion into marginal areas creates potential for loss-loss scenarios: clearing of high-biodiversity value land for economically unsustainable plantations that are poorly adapted to local conditions and alter landscape functions (e.g. hydrology, erosion) – ultimately compromising livelihoods, particularly when rubber prices fall.

    Keywords: Biodiversity, Cash crops, Deforestation, Rubber, South East Asia


  • Albuquerque F, Beier P (2015)

    Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning.

    PloS one 10(3) e0119905.

    Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts.

    Keywords: Biodiversity, Cash crops, Deforestation, Rubber, South East Asia


  • Alhajeri B, Hunt O, Steppan S (2015)

    Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla

    Journal of Zoological Systematics and Evolutionary Research.

    Recent molecular studies in gerbils found multiple instances of discordance between molecular and morphological phylogenies. In this study, we analyse the largest molecular data set to date of gerbils and their sister group the deomyines to estimate their phylogenetic relationships. Maximum-likelihood and Bayesian analyses were largely concordant, and both generally had high levels of node support. For gerbils, the results were generally concordant with previous molecular phylogenies based on allozymes, chromosomes, DNA/DNA hybridization and DNA sequences, and discordant with morphological phylogenies. None of the traditional gerbil tribes and subtribes were monophyletic. In addition, paraphyly was found in the genera Gerbillus, Gerbilliscus and Meriones as well as in five subgenera within Dipodillus, Gerbillurus and Meriones. Short branches separating taxa in small clusters within Dipodillus and Meriones suggest synonymy. Within deomyines, all genera and subgenera were monophyletic; however, two species groups within Acomys appear to contain synonymous taxa. We also find support for the discordance between molecular and morphological phylogenies in gerbils being partly due to convergent adaptations to arid environments, primarily in the suite of traits associated with inflation of the tympanic bullae. Relative bullar size does appear to be a desert adaptation and is correlated with aridity independent of phylogeny. Further, it varies more strongly along bioclimatic clines than between binary habitat classifications (desert versus mesic).

    Keywords: Arid environments, Muroidea, geometric morphometrics, molecular phylogenetics, skull morphology


  • Alimi T, Fuller D, Qualls W, Herrera S, Arevalo-Herrera M, Quinones M et al. (2015)

    Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population.

    Parasites & vectors 8 431.

    BACKGROUND: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. METHODS: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. RESULTS: Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. CONCLUSION: As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.

    Keywords: An. darlingi, An. nuneztovari s.l, Climate, Land-use changes, Malaria, Maxent, Population expansion, South America, Species distribution models, change


  • Alter S, Meyer M, Post K, Czechowski P, Gravlund P, Gaines C et al. (2015)

    Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    Molecular ecology 24(7) 1510-22.

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.

    Keywords: Animals, Arctic Regions, Atlantic Ocean, Biological, Climate Change, DNA, Ecosystem, Fossils, Genetic Variation, Haplotypes, Mitochondrial, Mitochondrial: genetics, Models, Molecular Sequence Data, Phylogeography, Population Dynamics, Sequence Analysis, Whales, Whales: genetics


  • Atwater D, Sezen U, Goff V, Kong W, Paterson A, Barney J (2015)

    Reconstructing changes in the genotype, phenotype, and climatic niche of an introduced species

    Ecography.

    An introduced species must contend with enormous environmental variation in its introduced range. In this study, we use niche models and ordination analyses to reconstruct changes in genotype, phenotype, and climatic niche of Johnsongrass (Sorghum halepense), which is regarded as one of the world's most threatening invasive plants. In the United States, Johnsongrass has rapidly evolved within- and among-population genetic diversity; our results show that genetic differentiation in expanding Johnsongrass populations has resulted in phenotypic variation that is consistent with habitat and climatic variation encountered during its expansion. Moreover, Johnsongrass expanded from agricultural to non-agricultural habitat, and now, despite occupying overlapping ranges, extant agricultural and non-agricultural populations are genetically and phenotypically distinct and manifest different plastic responses when encountering environmental variation. Non-agricultural accessions are broadly distributed in climatic and geographic space and their fitness traits demonstrate plastic responses to common garden conditions that are consistent with local specialization. In contrast, agricultural accessions demonstrate “general purpose” plastic responses and have more restricted climatic niches and geographic distributions. They also grow much larger than non-agricultural accessions. If these differences are adaptive, our results suggest that adaptation to local habitat variation plays a crucial role in the ecology of this invader. Further, its success relates to its ability to succeed on dual fronts, by responding simultaneously to habitat and climate variability and by capitalizing on differential responses to these factors during its range expansion.

    Keywords: Animals, Arctic Regions, Atlantic Ocean, Biological, Climate Change, DNA, Ecosystem, Fossils, Genetic Variation, Haplotypes, Mitochondrial, Mitochondrial: genetics, Models, Molecular Sequence Data, Phylogeography, Population Dynamics, Sequence Analysis, Whales, Whales: genetics