Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Netherlands.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • Beukhof E, Coolen J, van der Weide B, Cuperus J, de Blauwe H, Lust J (2016)

    Records of five bryozoan species from offshore gas platforms rare for the Dutch North Sea

    Marine Biodiversity Records 9(1) 91.

    This study reports on bryozoan species collected at three offshore gas platforms in the Dutch part of the North Sea. Four out of thirteen observed species are considered as rare in the Netherlands, whereas Cribrilina punctata is a new species for Dutch waters.

    Keywords: Arachnidium fibrosum, Bryozoa, Cribrilina punctata, Electra monostachys, Gas platform, Netherlands, North Sea, Offshore, Scruparia ambigua, Scruparia chelata

  • Branquart E, Brundu G, Buholzer S, Chapman D, Ehret P, Fried G et al. (2016)

    A prioritization process for invasive alien plant species incorporating the requirements of EU Regulation no. 1143/2014

    EPPO Bulletin 46(3) 603-617.

    When faced with a large species pool of invasive or potentially invasive alien plants, prioritization is an essential prerequisite for focusing limited resources on species which inflict high impacts, have a high rate of spread and can be cost-effectively managed. The prioritization process as detailed within this paper is the first tool to assess species for priority for risk assessment (RA) in the European Union (EU) specifically designed to incorporate the requirements of EU Regulation no. 1143/2014. The prioritization process can be used for any plant species alien to the EU, whether currently present within the territory or absent. The purpose of the prioritization is to act as a preliminarily evaluation to determine which species have the highest priority for RA at the EU level and may eventually be proposed for inclusion in the list of invasive alien species of EU concern. The preliminary risk assessment stage (Stage 1), prioritizes species into one of four lists (EU List of Invasive Alien Plants, EU Observation List of Invasive Alien Plants, EU List of Minor Concern and the Residual List) based on their potential for spread coupled with impacts. The impacts on native species and ecosystem functions and related ecosystem services are emphasized in line with Article 4.3(c) of the Regulation. Only those species included in the EU List of Invasive Alien Plants proceed to Stage 2 where potential for further spread and establishment coupled with evaluating preventative and management actions is evaluated. The output of Stage 2 is to prioritize those species which have the highest priority for a RA at the EU level or should be considered under national measures which may involve a trade ban, cessation of cultivation, monitoring, control, containment or eradication. When considering alien plant species for the whole of the EPPO region, or for species under the Plant Health Regulation, the original EPPO prioritization process for invasive alien plants remains the optimum tool. Un processus de priorisation pour les plantes exotiques envahissantes, intégrant les exigences du Règlement UE No 1143/2014 Face à un grand nombre d'espèces de plantes exotiques envahissantes, ou potentiellement envahissantes, prioriser est un pré-requis afin de concentrer des ressources limitées sur les espèces à forts impacts, ayant un potentiel important de dissémination, et pouvant être gérées de façon efficace. Le processus de priorisation, tel que décrit dans le présent article, est le premier outil permettant d’évaluer le besoin de réaliser, en priorité, pour une espèce, une évaluation du risque pour l'Union Européenne (UE), et ce en cohérence avec les exigences du Règlement UE No 1143/2014. Ce processus de priorisation peut être appliqué à toute plante exotique au territoire de l’UE, qu'elle soit présente ou non sur ce territoire. L'objectif est de déterminer, lors d'une étape préliminaire, les espèces prioritaires pour lesquelles une évaluation du risque doit être conduite au niveau de l’UE, et qui pourraient éventuellement être proposées à l'inscription au sein de la liste des espèces exotiques envahissantes préoccupantes pour l’UE. L’évaluation du risque préliminaire (étape 1), classe les espèces au sein de l'une des quatre listes (liste des plantes exotiques envahissantes pour l’UE, liste d'observation des plantes exotiques envahissantes pour l’UE, liste d'importance réduite pour l’UE et liste résiduelle) sur la base de leur capacité de dissémination et de leurs impacts. Pour les impacts, l'accent est mis sur les espèces autochtones, sur les fonctions écosystémiques, ainsi que les services écosystémiques, en cohérence avec l'article 4.3(c) du Règlement UE. Seulement les espèces classées dans la liste des plantes exotiques envahissantes pour l’UE passent à la seconde étape. Au cours de cette étape sont analysés les risques de dissémination et d’établissement, ainsi que les mesures prophylactiques ou mesures de gestion possibles. L’étape 2 classe les espèces les plus prioritaires pour la réalisation d'une évaluation du risque au niveau de l’UE, ou qui devraient faire l'objet de mesures nationales telles que l'interdiction du commerce, l'arrêt de la culture, la surveillance, le contrôle, l'enrayement ou l’éradication. Le processus de priorisation OEPP d'origine reste néanmoins l'outil optimal lorsque le processus est à réaliser sur l'ensemble de la région OEPP, ou pour des espèces réglementées dans le cadre phytosanitaire.

    Keywords: Arachnidium fibrosum, Bryozoa, Cribrilina punctata, Electra monostachys, Gas platform, Netherlands, North Sea, Offshore, Scruparia ambigua, Scruparia chelata

  • Bush M, Correa-Metrio A, McMichael C, Sully S, Shadik C, Valencia B et al. (2016)

    A 6900-year history of landscape modification by humans in lowland Amazonia

    Quaternary Science Reviews 141 52-64.

    A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and −10 cal BP.

    Keywords: Agriculture, Forest enrichment, Fossil charcoal, Fossil diatoms, Fossil pollen, Human disturbance, Iriartea, Maize, Mauritia, Pre-Columbian

  • Bush M, McMichael C (2016)

    Holocene Variability of an Amazonian Hyperdominant

    Journal of Ecology.

    Little is known regarding the long-term stability or instability of Amazonian plant communities. We assessed whether the most abundant species, hyperdominants, may have risen to prominence at the Pleistocene-Holocene transition, following subsequent changes in moisture regimes, or as a result of human activity later in the Holocene. The fossil pollen history of the commonest western Amazonian tree, Iriartea deltoidea (hereafter Iriartea), is investigated using fossil pollen data from 13 lakes. Iriartea is a monospecific genus with diagnostic pollen. It is also considered a ‘useful’ plant, and its abundance could have been enriched by human action. Iriartea pollen was found to have increased in abundance in the last 3000 years, but did not show a consistent relationship with human activity. The suggestion that the hyperdominants in modern Amazonian forests are a legacy of pre-Columbian people is unsupported. The abundance of Iriartea pollen is related to increasing precipitation, not human activity over the last 3000 years. This member of the hyperdominant category of Amazonian trees has only recently acquired this status. Synthesis: Our findings our consistent with the observation that communities in complex systems are ephemeral. The populations of even the most abundant species can change over a few tens of generations. The relative abundance of tree species, even in relatively stable systems such as those of Amazonian floodplains, changes on ecological not evolutionary timescales.

    Keywords: Anthropocene, Climate change, Forest enrichment, Fossil charcoal, Fossil pollen, Human disturbance, Hyperdominant tree, Iriartea deltoidea, Palaeoecology, Plant–climate interactions

  • Castañeda-Álvarez N, Khoury C, Achicanoy H, Bernau V, Dempewolf H, Eastwood R et al. (2016)

    Global conservation priorities for crop wild relatives

    Nature Plants 2(4) 16022.

    The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.

    Keywords: Anthropocene, Climate change, Forest enrichment, Fossil charcoal, Fossil pollen, Human disturbance, Hyperdominant tree, Iriartea deltoidea, Palaeoecology, Plant–climate interactions

  • Davies M, Piontek S (2016)

    The marine fishes of St. Eustatius, Dutch Caribbean

    Marine Biodiversity 1-9.

    In this paper, the findings are presented of the ichthyofaunal component of the Statia Marine Biodiversity Expedition, 2015. Roving visual surveys were used to rapidly assess presence/absence of fish species at 37 sampling locations within the waters of St. Eustatius, Dutch Caribbean. A total of 206 fish species were observed. Using a species accrual curve, total species richness was estimated to be between 240 and 250. Prior to the expedition, 215 fish species were recorded on St. Eustatius, bringing the total richness to 307 listed species (43 % increase). Of these, 246 were recorded by visual observation and fisheries data. The ichthyofaunal richness of St. Eustatius exceeds the upper estimate of 250 gained from these surveys, highlighting the inadequacies of visual surveys alone. St. Eustatius has comparable levels of species richness to similar-sized islands in the Caribbean. There were significant differences among fish communities in different habitats and depth classes. Further sampling is recommended using a variety of methods in order to produce a more accurate species richness estimate.

    Keywords: Biodiversity, Coral reef, Marine fish, Roving diver

  • Deblauwe V, Droissart V, Bose R, Sonké B, Blach-Overgaard A, Svenning J et al. (2016)

    Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics

    Global Ecology and Biogeography.

    Aim Species distribution modelling typically relies completely or partially on climatic variables as predictors, overlooking the fact that these are themselves predictions with associated uncertainties. This is particularly critical when such predictors are interpolated between sparse station data, such as in the tropics. The goal of this study is to provide a new set of satellite-based climatic predictor data and to evaluate its potential to improve modelled species–climate associations and transferability to novel geographical regions. Location Rain forests areas of Central Africa, the Western Ghats of India and South America. Methods We compared models calibrated on the widely used WorldClim station-interpolated climatic data with models where either temperature or precipitation data from WorldClim were replaced by data from CRU, MODIS, TRMM and CHIRPS. Each predictor set was used to model 451 plant species distributions. To test for chance associations, we devised a null model with which to compare the accuracy metric obtained for every species. Results Fewer than half of the studied rain forest species distributions matched the climatic pattern better than did random distributions. The inclusion of MODIS temperature and CHIRPS precipitation estimates derived from remote sensing each allowed for a better than random fit for respectively 40% and 22% more species than models calibrated on WorldClim. Furthermore, their inclusion was positively related to a better transferability of models to novel regions. Main conclusions We provide a newly assembled dataset of ecologically meaningful variables derived from MODIS and CHIRPS for download, and provide a basis for choosing among the plethora of available climate datasets. We emphasize the need to consider the method used in the production of climate data when working on a region with sparse meteorological station data. In this context, remote sensing data should be the preferred choice, particularly when model transferability to novel climates or inferences on causality are invoked.

    Keywords: Association test, CHIRPS, GLM, MODIS, MaxEnt, TRMM, WorldClim, ecological niche model, habitat suitability, null model

  • Drees C, Husemann M, Homburg K, Brandt P, Dieker P, Habel J et al. (2016)

    Molecular analyses and species distribution models indicate cryptic northern mountain refugia for a forest-dwelling ground beetle

    Journal of Biogeography.

    Aim Identification of potential glacial refugia and post-glacial colonization processes of a flightless, cold-adapted ground beetle Location Central and eastern Europe. Methods We analysed the genetic structure of 33 Carabus sylvestris populations sampled across its entire distribution range using nuclear and mitochondrial markers. We further compiled occurrence records to develop species distribution models to predict distribution ranges for the last glacial period and the present based on the species’ current climatic niche. Results Distinct genetic lineages were detected for a number of mountain ranges and were congruent for both molecular marker systems. Most genetic splits were the results of vicariance, whereas dispersal was rare. Our models suggest that the species’ distribution range was larger and more interconnected in the past. Main conclusions Our data support multiple glacial refugia for C. sylvestris, some of which were located north of the Alps. Some lower mountain ranges were likely recolonized post-glacially.

    Keywords: 2014-SGR-1491, DEB-1353301, EF-1065753, EF-1065826, EF-1065864, National Science Foundation grants . Grant Numbers

  • Gilles D, Zaiss R, Blach-Overgaard A, Catarino L, Damen T, Deblauwe V et al. (2016)

    RAINBIO: a mega-database of tropical African vascular plants distributions

    PhytoKeys 74 1-18.

    Dear Wycliffe, We have now evaluated the early progress reports and updates you submitted via email as part of the reporting process for BID-AF2015-0035-NAC. We are pleased to note your efforts to improve engagement with your project’s national partners. We believe that a strong engagement of all project partners is essential to a successful project and would like to encourage you to continue fostering communication among Kenya Wildlife Service, Nature Kenya and National Museums of Kenya. Please do not hesitate to raise any concerns with us if you feel that you encounter unexpected difficulties in this area. Following the assessment of your reports, we are happy to inform you that your narrative and financial reports have now been pre-approved by GBIF Secretariat. We have made some edits to the formatting of the narrative report as the template seemed to have caused problems in the version we received – and it was missing the automatic table of contents (see reformatted version attached). Once you have checked this through, you can now send the original signed copies of these reports to GBIF Secretariat by courier to: GBIF Secretariat Universitetsparken 15 DK-2100 Copenhagen Ø DENMARK Please note that, as described in the contract under “Schedule of payments”, it is a requirement to have spent minimum 80% of previous BID payments received, before qualifying for further installments. In your submitted Early Progress Financial Reports we have noted that only 50% have been spent, thus no further installments will be made at this time. However, it is still mandatory to send us original signed copies of the pre-approved narrative and financial reports by courier already now to finalize the early progress reporting process. We ask you to submit an updated Financial report (Financial report by Activity & Expense Types and the Expense Summary Page), at such a time when minimum 80% of already received BID payments have been spent. The format of the Financial Reports should be the same as the Early Progress Financial Reports and can be accepted in electronic format. When you reach this stage, we would invite you to send a short update on progress made in the implementation of your project’s activities, particularly after your further meetings with the project partners. We would also like to remind you of the possibility to request support from the BID mentors by writing to the BID community mailing list at You are also very welcome to contact us at to request assistance to identify possible mentors based on identified capacity needs. We would recommend contacting the mailing list early to plan any assistance that could be required for your next workshop. With Best Regards

    Keywords: Herbarium specimens, biodiversity assessmen, cultivated species, digitization, georeferencing, habit, native species, taxonomic backbone, tropical forests

  • Herkt K, Barnikel G, Skidmore A, Fahr J (2016)

    A high-resolution model of bat diversity and endemism for continental Africa

    Ecological Modelling 320 9-28.

    Bats are the second-most species-rich mammal group numbering more than 1270 species globally. Our knowledge of their geographic distributions and diversity patterns however is very limited – possibly the poorest among mammals – mainly due to their nocturnal and volant life history, and challenging fieldwork conditions in the tropics where most bat species occur. This knowledge gap obscures the geographic extent of ecosystem services provided by bats (i.e. pollination, seed dispersal and insect control), translates into inefficient conservation policies, and restricts macroecological analyses to coarse spatial resolutions. In contrast to the currently prevailing method of estimating species distributions using expert-drawn range maps, correlative species distribution models (SDMs) can provide estimates at very fine spatial grains and largely account for widespread sample bias as well as the prevalent Wallacean shortfall in species occurrence data. Very few such studies have hitherto been published that cover a large and complete taxonomic group with fine resolution at continental extent. Using an unparalleled amount of occurrence data, the MaxEnt algorithm and tailored solutions to specific modelling challenges, we created SDMs for nearly all 250 African bat species to explore emerging diversity patterns at a resolution of 1km2. Predicted species richness generally increases towards the equator conforming to expectations. Within the tropical area of elevated richness, several pronounced richness peaks and lows stand out, hinting at a complex interplay of determining factors. Richness gradients are often steep, decreasing strongly away from streams, and especially so in savanna biomes. Species richness also seems positively associated with rugged terrain, in particular at lower elevations. Centres of endemism are found primarily at low latitudes near major elevational ranges. Overlap with hotspots of species richness is rather low, and confined to five or six topodiverse, relatively low lying areas between western Guinea and the East African coast. Several poorly sampled regions are identified that may represent rewarding future survey targets. Our results demonstrate the value of stacking SDMs to infer plausible continent-wide diversity gradients at a spatial resolution fine enough to directly inform conservation policies and to open up new avenues in macroecological research.

    Keywords: Africa, Chiroptera, Range size rarity, Spatial resolution, Species distribution modelling (SDM), Species richness