Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Mexico.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • Correa Ayram C, Mendoza M, Etter A, Pérez Salicrup D (2017)

    Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico

    Ecological Indicators 72 895-909.

    Evaluating the cumulative effects of the human footprint on landscape connectivity is crucial for implementing policies for the appropriate management and conservation of landscapes. We present an adjusted multidimensional spatial human footprint index (SHFI) to analyze the effects of landscape transformation on the remnant habitat connectivity for 40 terrestrial mammal species representative of the Trans-Mexican Volcanic System in Michoacán (TMVSMich), in western central Mexico. We adjusted the SHFI by adding fragmentation and habitat loss to its original three components: land use intensity, time of human landscape intervention, and biophysical vulnerability. The adjusted SHFI was applied to four scenarios: one grouping all species and three grouping several species by habitat spatial requirements. Using the SHFI as a dispersal resistance surface and applying a circuit theory based approach, we analyzed the effects of cumulative human impact on habitat connectivity in the different scenarios. For evaluating the relationship between habitat loss and connectivity, we applied graph theory-based equivalent connected area (ECA) index. Results show over 60% of the TMVSMich has high SHFI values, considerably lowering current flow for all species. Nevertheless, the effect on connectivity of human impact is higher for species with limited dispersal capacity (100–500m). Our approach provides a new form of evaluating human impact on habitat connectivity that can be applied to different scales and landscapes. Furthermore, the approach is useful for guiding discussions and implementing future biodiversity conservation initiatives that promote landscape connectivity as an adaptive strategy for climate change.

    Keywords: Cumulative human impact, Habitat connectivity, Mexico, Multi-species


  • De Pooter D, Appeltans W, Bailly N, Bristol S, Deneudt K, Eliezer M et al. (2017)

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Biodiversity Data Journal 5 e10989.

    The Ocean Biogeographic Information System (OBIS) is the world’s most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.

    Keywords: Darwin Core Archive, data standardisation, ecosystem data, environmental data, oceanographic data, sample event, species occurrence, telemetry data


  • Feldman R, Peers M, Pickles R, Thornton D, Murray D (2017)

    Climate driven range divergence among host species affects range-wide patterns of parasitism

    Global Ecology and Conservation 9 1-10.

    Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer) accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose) and Rangifer tarandus (caribou), in North America. We used MaxEnt models to predict the recent (2000) and future (2050) ranges (probabilities of occurrence) of the cervids and a parasite Parelaphostrongylus tenuis (brainworm) taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

    Keywords: Boreal, Cervidae, Climate change, Evolution, Parasitism, Synergistic effects


  • López-Alcaide S, Nakamura M, Smith E, Martínez-Meyer E (2017)

    Would behavioral thermoregulation enables pregnant viviparous tropical lizards to cope with a warmer world?

    Integrative Zoology.

    Sceloporus lizards depend on external heat to achieve their preferred temperature (Tse1) for performing physiological processes. Evidence both in the field and laboratory indicates that pregnant females of this genus select body temperatures (Tb) lower than 34°C as higher temperatures may be lethal to embryos. Therefore, thermoregulation is crucial for successful embryo development. Given the increase in global air temperature, it is expected that the first compensatory response of species that inhabit tropical climates will be behavioral thermoregulation. We tested if viviparous Sceloporus formosus group lizards in the wild exhibited differences in thermoregulatory behavior to achieve the known Tse1 for developing embryos regardless of local thermal conditions. We quantified field active body temperature, thermoregulatory behavior mechanisms (time of sighting, microhabitat used and basking time), and available microhabitat thermal conditions (i.e., operative temperature) for ten lizard species during gestation, distributed along an altitudinal gradient. We applied both conventional and phylogenic analyses to explore if Tb or behavioral thermoregulation could be regulated in response to different thermal conditions. These species showed no significant differences in field Tb during gestation regardless of local thermal conditions. In contrast, they exhibited significant differences in their behavioral thermoregulation associated to local environmental conditions. Based on these observations, the differences in thermoregulatory behavior identified are interpreted as compensatory adjustments to local thermal conditions. We conclude that these species may deal with higher stressing environmental temperatures scenarios forecasted to the tropics by modulating their thermoregulatory behavior repertoire as first reaction.

    Keywords: Altitudinal gradient, Sceloporus formosus, behavior, global warming, thermal stress


  • Rengifo-correa L, Stephens C, Morrone J, TÉllez-rendÓn J, GonzÁlez-salazar C (2017)

    Understanding transmissibility patterns of Chagas disease through complex vector–host networks

    Parasitology 1-13.

    Chagas disease is one of the most important vector-borne zoonotic diseases in Latin America. Control strategies could be improved if transmissibility patterns of its aetiologic agent, Trypanosoma cruzi , were better understood. To understand transmissibility patterns of Chagas disease in Mexico, we inferred potential vectors and hosts of T. cruzi from geographic distributions of nine species of Triatominae and 396 wild mammal species, respectively. The most probable vectors and hosts of T. cruzi were represented in a Complex Inference Network, from which we formulated a predictive model and several associated hypotheses about the ecological epidemiology of Chagas disease. We compiled a list of confirmed mammal hosts to test our hypotheses. Our tests allowed us to predict the most important potential hosts of T. cruzi and to validate the model showing that the confirmed hosts were those predicted to be the most important hosts. We were also able to predict differences in the transmissibility of T. cruzi among triatomine species from spatial data. We hope our findings help drive efforts for future experimental studies.

    Keywords: Trypanosoma cruzi, ecological epidemiology, potential hosts, spatial data mining


  • Aguilar-Lopez J, Pineda E, Luria-Manzano R, Canseco-Marquez L (2016)

    Species Diversity, Distribution, and Conservation Status in a Mesoamerican Region: Amphibians of the Uxpanapa-Chimalapas Region, Mexico

    Tropical Conservation Science 9(4) 1940082916670003.

    The Uxpanapa-Chimalapas region, with one of the most extensive and best preserved tropical forest areas in Mexico, is undergoing major anthropogenic changes, and only some portions of the territory are under the protection of local communities. Although the biodiversity of the region is known to be high, no study has yet analyzed the diversity of amphibian species in the region or contributed to valuing the region in a context of amphibian conservation. Based on a review of databases and the existing scientific literature, as well as our own fieldwork, in this study, we analyze the amphibian species richness, species composition, their spatial distribution, and their conservation status in the Uxpanapa-Chimalapas region. Additionally, we compare this information with the available data for seven other tropical regions in central-northern Mesoamerica. The amphibian fauna recorded at the study region comprises 51 species, which makes it the richest tropical region in amphibian species in central-northern Mesoamerica and Mexico. Among the regions compared, this one stands out as the one with the most distinctive composition of amphibian species, sharing on average only 35% of its species with the other regions. However, it is also the region with the highest number of threatened species since one third of its species are in higher extinction risk categories. These characteristics turn the Uxpanapa-Chimalapas into a high-priority region for both Mexico and Mesoamerica, and a regional conservation plan is necessary for the immediate protection of areas where the forest is being replaced and to promote or to support community protected areas.

    Keywords: amphibian fauna, conservation value, species composition, species richness


  • Arias-Alzate A, González-Maya J, Arroyo-Cabrales J, Martínez-Meyer E (2016)

    Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?

    Journal of Mammalian Evolution 1-12.

    Theoretical and empirical evidence suggests that the ecological niche of species tends to be conservative over evolutionary time in many taxonomic groups, thus representing long-term stable constraints on species geographic distributions. Using an ecological niche modeling approach, we assessed the impact of climatic change on wild felid species potential range shifts over the last 130 K years in the Americas and the potential of such shifts as an extinction driver. We found a significant range shift for most species (both living and extinct) across their distributions driven by large-scale environmental changes. Proportionally, the most drastic range increase for all species occurred in the Last Glacial Maximum (LGM: 18 K years)–Current transition, while for the Last Inter-Glacial (LIG: 130 K years)–LGM transition an important range reduction occurred, which was larger for extinct North American species. In conclusion, the reduction of climatically suitable areas for many species in the transition LIG–LGM may have produced population reductions, which, in turn, may have played an important role in species’ extinction throughout the continent.

    Keywords: Bottlenecks, Ecological niche, Extinction, Felidae, Late Pleistocene, Range shift


  • Bush M, Correa-Metrio A, McMichael C, Sully S, Shadik C, Valencia B et al. (2016)

    A 6900-year history of landscape modification by humans in lowland Amazonia

    Quaternary Science Reviews 141 52-64.

    A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and −10 cal BP.

    Keywords: Agriculture, Forest enrichment, Fossil charcoal, Fossil diatoms, Fossil pollen, Human disturbance, Iriartea, Maize, Mauritia, Pre-Columbian


  • Bélgica Pérez-De la O, López-Martínez V, Jiménez-García D, Campos-Figueroa M (2016)

    Model Simulation of Potential Distribution of Lobesia botrana (Denis & Schiffermüller) in Grape, Vitis vinifera (L.) Vineyard Regions of Mexico

    Southwestern Entomologist 41(3) 693-704.

    Abstract. Environmental suitability for the European grapevine moth, Lobesia botrana (Denis & Schiffermüller) was studied in Mexico. Nineteen weather variables were studied in grapevine, Vitis vinifera (L.), regions of the country. The model calculated areas with high and medium probability of environmental suitability in Baja California, medium probability in central and northern Chihuahua, and low probability in Coahuila, Durango, Puebla, Sonora, and Zacatecas. The environmental variables with most impact were average annual temperature (17.2%), rainfall amount during coldest month (16.4%), average temperature of most humid quartile (14.4%), and minimum temperature of coldest month (11.4%). Baja California State is most at risk for invasion by European grapevine moth.

    Keywords: Agriculture, Forest enrichment, Fossil charcoal, Fossil diatoms, Fossil pollen, Human disturbance, Iriartea, Maize, Mauritia, Pre-Columbian


  • Carrillo-Angeles I, Suzán-Azpiri H, Mandujano M, Golubov J, Martínez-Ávalos J (2016)

    Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae)

    Journal of Arid Environments 124 310-317.

    The niche breadth of a species reflects its ability to inhabit different conditions, and to use different resources, hence, species with wider niche are expected to be more resilient to anthropogenic derived climate change. We estimated the niche breadth of all species of the genus Astrophytum from macro-environmental variables and measures of local habitat uses, in order to evaluate whether species having wider niche breadths are less prone to experience unsuitable conditions projected by the A1B and A2 scenarios of the IPCC for 2020 and 2050, and analyzed the implications of projections for the conservation of the genus Astrophytum. Our analysis suggests that most of populations of the four species will experience increasingly unsuitable conditions due to the increase of temperature and reduction in precipitation. The species less affected were those with wider niche breadth and situated in the middle of the latitudinal range and in the middle or lower extreme of the precipitation range for the genus (A. capricorne and A. myriostigma). Although the main threats for Astrophytum species come from the destruction of their habitats and activities as illegal extraction, climate change may reduce the chances for the regeneration of populations and the success of reintroduction programs.

    Keywords: Bioclimatic variables, IPCC scenarios, MaxEnt, Threatened species