Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from United Kingdom.
Extracted from the Mendeley GBIF Public Library.

List of publications

  • Aguiar L, da Rosa R, Jones G, Machado R (2015)

    Effect of chronological addition of records to species distribution maps: The case of Tonatia saurophila maresi (Chiroptera, Phyllostomidae) in South America

    Austral Ecology.

    Ecological niche models have become very popular for analysing the potential distribution of species. Nevertheless, models are strongly influenced by many factors, such as spatial resolution, environmental variables and the quality of distribution records. In this paper, we evaluated how ecological niche models changed with the addition of records accumulated over four decades. Our model species was the stripe-headed round-eared bat (Tonatia saurophila). Thus, with data organized in chronological order, we could observe how the models changed in predicting distributions over time in comparison with all known point locations. We tested if partial models could predict the occurrence of new unpublished records for savannah areas in central Brazil, considering that the species is typically associated with forest environments. Our results indicate a high omission rate for models built with point localities from the 1970s and 1980s (58.5% and 50.0% of all known points respectively), and predicted that the species could occur in central Brazil. Although T. saurophila has indeed been recorded recently in central Brazil, it was found in places different from those predicted by the models using these restricted earlier data. Nevertheless, the environmental suitability of such areas is significantly different from sites largely described in earlier records from the Amazonia region, as shown by principal components analysis. We argue that populations of T. saurophila that occupy open habitats in central South America (including Caatinga, Cerrado, Chaco and semi-deciduous interior forests) deserve further study at the genetic level to determine if bats in these very different habitats are taxonomically distinct from Amazonian populations. Our results also suggest that models based on very limited datasets for species occurrence can lead conservationists or decision makers to wrong conclusions.

    Keywords: Maxent, bat, biogeography, conservation, ecological niche model, neotropical savannah

  • Ahrends A, Hollingsworth P, Ziegler A, Fox J, Chen H, Su Y et al. (2015)

    Current trends of rubber plantation expansion may threaten biodiversity and livelihoods

    Global Environmental Change 34 48-58.

    The first decade of the new millennium saw a boom in rubber prices. This led to rapid and widespread land conversion to monoculture rubber plantations in continental SE Asia, where natural rubber production has increased >50% since 2000. Here, we analyze the subsequent spread of rubber between 2005 and 2010 in combination with environmental data and reports on rubber plantation performance. We show that rubber has been planted into increasingly sub-optimal environments. Currently, 72% of plantation area is in environmentally marginal zones where reduced yields are likely. An estimated 57% of the area is susceptible to insufficient water availability, erosion, frost, or wind damage, all of which may make long-term rubber production unsustainable. In 2013 typhoons destroyed plantations worth US$ >250 million in Vietnam alone, and future climate change is likely to lead to a net exacerbation of environmental marginality for both current and predicted future rubber plantation area. New rubber plantations are also frequently placed on lands that are important for biodiversity conservation and ecological functions. For example, between 2005 and 2010 >2500km2 of natural tree cover and 610km2 of protected areas were converted to plantations. Overall, expansion into marginal areas creates potential for loss-loss scenarios: clearing of high-biodiversity value land for economically unsustainable plantations that are poorly adapted to local conditions and alter landscape functions (e.g. hydrology, erosion) – ultimately compromising livelihoods, particularly when rubber prices fall.

    Keywords: Biodiversity, Cash crops, Deforestation, Rubber, South East Asia

  • Alter S, Meyer M, Post K, Czechowski P, Gravlund P, Gaines C et al. (2015)

    Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    Molecular ecology 24(7) 1510-22.

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.

    Keywords: Animals, Arctic Regions, Atlantic Ocean, Biological, Climate Change, DNA, Ecosystem, Fossils, Genetic Variation, Haplotypes, Mitochondrial, Mitochondrial: genetics, Models, Molecular Sequence Data, Phylogeography, Population Dynamics, Sequence Analysis, Whales, Whales: genetics

  • Beatty G, Lennon J, O'Sullivan C, Provan J (2015)

    The not-so-Irish spurge: Euphorbia hyberna (Euphorbiaceae) and the Littletonian plant ‘steeplechase’

    Biological Journal of the Linnean Society 114(2) 249-259.

    The disjunct distributions of the Lusitanian flora, which are found only in south-west Ireland and northern Iberia, and are generally absent from intervening regions, have been of great interest to biogeographers. There has been much debate as to whether Irish populations represent relicts that survived the Last Glacial Maximum (LGM; approximately 21 kya), or whether they recolonized from southern refugia subsequent to the retreat of the ice and, if so, whether this occurred directly (i.e. the result of long distance dispersal) or successively (i.e. in the manner of a ‘steeplechase’, with the English Channel and Irish Sea representing successive ‘water-jumps’ that have to be successfully crossed). In the present study, we used a combined palaeodistribution modelling and phylogeographical approach to determine the glacial history of the Irish spurge, Euphorbia hyberna, the sole member of the Lusitanian flora that is also considered to occur naturally in south-western England. Our findings suggest that the species persisted through the LGM in several southern refugia, and that northern populations are the result of successive recolonization of Britain and Ireland during the postglacial Littletonian warm stage, akin to the ‘steeplechase’ hypothesis

    Keywords: Last Glacial Maximum, Lusitanian flora, palaeodistribution modelling, phylogeography

  • Bone R, Smith J, Arrigo N, Buerki S (2015)

    A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case study.

    The New phytologist.

    Crassulacean acid metabolism (CAM) photosynthesis is an adaptation to water and atmospheric CO2 deficits that has been linked to diversification in dry-adapted plants. We investigated whether CAM evolution can be associated with the availability of new or alternative niches, using Eulophiinae orchids as a case study. Carbon isotope ratios, geographical and climate data, fossil records and DNA sequences were used to: assess the prevalence of CAM in Eulophiinae orchids; characterize the ecological niche of extant taxa; infer divergence times; and estimate whether CAM is associated with niche shifts. CAM evolved in four terrestrial lineages during the late Miocene/Pliocene, which have uneven diversification patterns. These lineages originated in humid habitats and colonized dry/seasonally dry environments in Africa and Madagascar. Additional key features (variegation, heterophylly) evolved in the most species-rich CAM lineages. Dry habitats were also colonized by a lineage that includes putative mycoheterotrophic taxa. These findings indicate that the switch to CAM is associated with environmental change. With its suite of adaptive traits, this group of orchids represents a unique opportunity to study the adaptations to dry environments, especially in the face of projected global aridification.

    Keywords: Africa, Eulophiinae, Madagascar, Orchidaceae, climate change, crassulacean acid metabolism (CAM) photosynthesis, shift of niche

  • Bowler D, Haase P, Kröncke I, Tackenberg O, Bauer H, Brendel C et al. (2015)

    A cross-taxon analysis of the impact of climate change on abundance trends in central Europe

    Biological Conservation 187 41-50.

    Advances in phenology and pole- and up-ward shifts in geographic ranges are well-documented signs that species are responding to climate change. A deeper understanding of such responses across ecologically different species groups will help to assess future consequences for entire ecosystems. A less well-studied pattern linked with climate change is increases in abundances of warm-adapted species compared with cold-adapted species. To compare how recent climate change has affected the abundances of species across different taxonomic groups, we analyzed long-term local population trends and related them to the species temperature niche, as inferred from geographic distributions. We used population data sets collected in different regions of Central Europe, primarily Germany, for bats, birds, butterflies, ground beetles, springtails and dry grassland plants. We found that temperature niche was positively associated with long-term population trends in some of the taxonomic groups (birds, butterflies, ground beetles) but was less important in others (bats, springtails, and grassland plants). This variation in the importance of temperature niche suggested that some populations have been affected more than others by climate change, which may be explained by differences in species attributes, such as generation time and microhabitat preference. Our findings indicate that relating temperature niches of species to population trends is a useful method to quantify the impact of climate change on local population abundances. We show that this widely applicable approach is particularly suited for comparative cross-system analyses to identify which types of organisms, in which habitats, are responding the most to climate change.

    Keywords: Comparative analysis, Environmental drivers, Population trends, Species traits, Thermal niche

  • Brummitt N, Bachman S, Griffiths-Lee J, Lutz M, Moat J, Farjon A et al. (2015)

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

    PloS one 10(8) e0135152.

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.

    Keywords: Comparative analysis, Environmental drivers, Population trends, Species traits, Thermal niche

  • Báez S, Malizia A, Carilla J, Blundo C, Aguilar M, Aguirre N et al. (2015)

    Large-scale patterns of turnover and Basal area change in Andean forests.

    PloS one 10(5) e0126594.

    General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.

    Keywords: Comparative analysis, Environmental drivers, Population trends, Species traits, Thermal niche

  • Carlos-Júnior L, Neves D, Barbosa N, Moulton T, Creed J (2015)

    Occurrence of an invasive coral in the southwest Atlantic and comparison with a congener suggest potential niche expansion.

    Ecology and evolution 5(11) 2162-71.

    Tubastraea tagusensis, a coral native to the Galapagos Archipelago, has successfully established and invaded the Brazilian coast where it modifies native tropical rocky shore and coral reef communities. In order to understand the processes underlying the establishment of T. tagusensis, we tested whether Maxent, a tool for species distribution modeling, based on the native range of T. tagusensis correctly forecasted the invasion range of this species in Brazil. The Maxent algorithm was unable to predict the Brazilian coast as a suitable environment for the establishment of T. tagusensis. A comparison between these models and a principal component analysis (PCA) allowed us to examine the environmental dissimilarity between the two occupied regions (native and invaded) and to assess the species' occupied niche breadth. According to the PCA results, lower levels of chlorophyll-a and nitrate on the Atlantic coast segregate the Brazilian and Galapagos environments, implying that T. tagusensis may have expanded its realized niche during the invasion process. We tested the possible realized niche expansion in T. tagusensis by assuming that Tubastraea spp. have similar fundamental niches, which was supported by exploring the environmental space of T. coccinea, a tropical-cosmopolitan congener of T. tagusensis. We believe that the usage of Maxent should be treated with caution, especially when applied to biological invasion (or climate change) scenarios where the target species has a highly localized native (original) distribution, which may represent only a small portion of its fundamental niche, and therefore a violation of a SDM assumption.

    Keywords: Coral species, Tubastraea coccinea, Tubastraea tagusensis, marine invasions, niche breadth, species distribution modeling

  • Castañeda-Álvarez N, de Haan S, Juárez H, Khoury C, Achicanoy H, Sosa C et al. (2015)

    Ex situ conservation priorities for the wild relatives of potato (solanum L. Section petota).

    PloS one 10(4) e0122599.

    Crop wild relatives have a long history of use in potato breeding, particularly for pest and disease resistance, and are expected to be increasingly used in the search for tolerance to biotic and abiotic stresses. Their current and future use in crop improvement depends on their availability in ex situ germplasm collections. As these plants are impacted in the wild by habitat destruction and climate change, actions to ensure their conservation ex situ become ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild relatives of potato (Solanum section Petota) with the aim of establishing priorities for further collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were assigned high priority for further collecting due to severe gaps in their ex situ collections. Such gaps are most pronounced in the geographic center of diversity of the wild relatives in Peru. A total of 20 and 18 species were assessed as medium and low priority for further collecting, respectively, with only three species determined to be sufficiently represented currently. Priorities for further collecting include: (i) species completely lacking representation in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the center of species diversity; (iii) medium priority species. Such collecting efforts combined with further emphasis on improving ex situ conservation technologies and methods, performing genotypic and phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and making conserved wild relatives and their associated data accessible to the global research community, represent key steps in ensuring the long-term availability of the wild genetic resources of this important crop.

    Keywords: Coral species, Tubastraea coccinea, Tubastraea tagusensis, marine invasions, niche breadth, species distribution modeling