Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from United Kingdom.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • De Pooter D, Appeltans W, Bailly N, Bristol S, Deneudt K, Eliezer M et al. (2017)

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Biodiversity Data Journal 5 e10989.

    The Ocean Biogeographic Information System (OBIS) is the world’s most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.

    Keywords: Darwin Core Archive, data standardisation, ecosystem data, environmental data, oceanographic data, sample event, species occurrence, telemetry data

  • Kennedy M, Lang P, Grimaldo J, Martins S, Bruce A, Moore I et al. (2017)

    Niche-breadth of freshwater macrophytes occurring in tropical southern African rivers predicts species global latitudinal range

    Aquatic Botany 136 21-30.

    The study tested the hypothesis that measurement, using multivariate Principal Components Analysis (PCA), of the niche-breadth of river macrophyte species in southern tropical Africa, may predict their larger-scale biogeographical range. Two measures of niche-breadth were calculated for 44 riverine macrophyte species, from 20 families commonly occurring in Zambia, using an approach based on PCA ordination with 16 bio-physico-chemical input variables. These included altitude, stream order, stream flow, pH, conductivity and soluble reactive phosphate concentration (SRP). In the absence of additional chemical water quality data for Zambian rivers, invertebrate-based measures of general water quality were also used. These were benthic macroinvertebrate Average Score per Taxon (ASPT), and individual abundance of nine macroinvertebrate families with differing water quality tolerance, indicated by their Sensitivity Weightings within the Zambian Invertebrate Scoring System (ZISS). Macrophyte large-scale latitudinal range was derived from world geopositional records held by online databases, and additional records held by the authors. The two niche-breadth metrics divided the species into narrow-niche and intermediate/broad-niche categories, showing significant variation (from one or both of correlation and ANOVA test outcomes) in altitude, stream flow, conductivity, SRP, pH and ASPT, but not stream order. Macrophyte alpha-diversity (as a measure of number of individual niches co-existing per habitat) showed no significant relationship with individual species niche-breadth. Narrow-niche species included a higher proportion of Afrotropical endemics than did species with broader niche size. There were significant predictive relationships between macrophyte niche-breadth and latitudinal range of the target species at global and Afrotropical scales, but not for the Neotropics.

    Keywords: Africa, Aquatic plants, Benthic macroinvertebrates, Freshwater ecology, Latitudinal distribution, Niche analysis, Rivers

  • Pellegrini A, Anderegg W, Paine C, Hoffmann W, Kartzinel T, Rabin S et al. (2017)

    Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change

    Ecology Letters.

    Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.

    Keywords: Bark thickness, fire ecology, forest, functional traits, global change, savanna

  • Aguiar L, Bernard E, Ribeiro V, Machado R, Jones G (2016)

    Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats

    Global Ecology and Conservation 5 22-33.

    Most extant species are survivors of the last climate change event 20,000 years ago. While past events took place over thousands of years, current climate change is occurring much faster, over a few decades. We modelled the potential distribution area of bat species in the Brazilian Cerrado, a Neotropical savannah, and assessed the potential impacts of climate change up to 2050 in two scenarios. First we evaluated what the impact on the distributions of bat species would be if they were unable to move to areas where climate conditions might be similar to current ones. The novelty of our paper is that, based on least-cost-path analyses, we identified potential corridors that could be managed now to mitigate potential impacts of climate change. Our results indicate that on average, in the future bat species would find similar climate conditions 281 km southeast from current regions. If bat species were not able to move to new suitable areas and were unable to adapt, then 36 species (31.6%) could lose >80% of their current distribution area, and five species will lose more than 98% of their distribution area in the Brazilian Cerrado. In contrast, if bat species are able to reach such areas, then the number of highly impacted species will be reduced to nine, with none of them likely to disappear from the Cerrado. We present measures that could be implemented immediately to mitigate future climate change impacts.

    Keywords: Brazil, Brazilian Cerrado, Chiroptera, Conservation, Ecological niche models

  • Alexander N, Massei G, Wint W (2016)

    The European Distribution of Sus Scrofa. Model Outputs from the Project Described within the Poster – Where are All the Boars? An Attempt to Gain a Continental Perspective

    Open Health Data 4(1).

    Wild boar is a host of a number of arthropod-vectored diseases and its numbers are on the rise in mainland Europe. The species potentially impacts ecosystems, humans and farming practices and so its distribution is of interest to policy makers in a number of fields beyond that of the primarily epidemiological goal of this study. Three statistical model outputs describing the distribution and abundance of the species Sus scrofa (Wild boar) are included in this data package. The extent of this dataset covers continental Europe. These data were presented as a poster [1] at the conference Genes, Ecosystems and Risk of Infection (GERI 2015). The first of the three models provide a European map presenting the probability of presence of Sus scrofa, which can be used to describe the likely geographical distribution of the species. The second and third models provide indices to help describe the likely abundance across the continent. The two indices include “the proportion of suitable habitat where presence is estimated” and a simple classification of boar abundance across Europe using quantiles of existing abundance data and proxies.

    Keywords: Abundance, Distribution, Europe, Random Forest, Statistical modelling, Sus scrofa

  • Aliabadian M, Alaei-Kakhki N, Mirshamsi O, Nijman V, Roulin A (2016)

    Phylogeny, biogeography, and diversification of barn owls (Aves: Strigiformes)

    Biological Journal of the Linnean Society.

    The existence of substantial morphological variation has resulted in the description of numerous subspecies of the cosmopolitan barn owl, Tyto alba. However, preliminary studies have revealed a high degree of genetic variation between Old and New World barn owls, suggesting that the T. alba complex may consist of several species. We present a comprehensive study of its taxonomy and propose a spatiotemporal framework to explain the origin and patterns of dispersal and diversification within these cosmopolitan owls. We used a Bayesian relaxed molecular clock approach to assess the timing of diversification. To evaluate the biogeographical pattern, we considered dispersal in addition to temporal connectivity between areas. Finally, we used ecological niche modelling to evaluate their ecological niches. Our phylogenetic analyses suggest that barn owls of the Old and New World show a high degree of genetic divergence, and the barn owls of South and South-east Asia (Tyto alba stertens and Tyto alba javanica) cluster with the Australian barn owl Tyto delicatula. We propose to treat the T. alba complex as three species: T. alba (Africa, Europe), Tyto furcata (New World), and Tyto javanica (Australasia). The dating analyses indicate that the early divergence among the species of the T. alba complex took place in the Middle Miocene and we hypothesize that a common ancestor of the T. alba complex lived in Africa. A potential scenario suggests that T. alba dispersed to Europe and south-western Asia during the interglacial periods of the Miocene/Pliocene, and dispersed into the New World either via an eastern Asian route or a western north Atlantic one.

    Keywords: Abundance, Distribution, Europe, Random Forest, Statistical modelling, Sus scrofa

  • Araújo R, Assis J, Aguillar R, Airoldi L, Bárbara I, Bartsch I et al. (2016)

    Status, trends and drivers of kelp forests in Europe: an expert assessment

    Biodiversity and Conservation 25(7) 1319-1348.

    A comprehensive expert consultation was conducted in order to assess the status, trends and the most important drivers of change in the abundance and geographical distribution of kelp forests in European waters. This consultation included an on-line questionnaire, results from a workshop and data provided by a selected group of experts working on kelp forest mapping and eco-evolutionary research. Differences in status and trends according to geographical areas, species identity and small-scale variations within the same habitat where shown by assembling and mapping kelp distribution and trend data. Significant data gaps for some geographical regions, like the Mediterranean and the southern Iberian Peninsula, were also identified. The data used for this study confirmed a general trend with decreasing abundance of some native kelp species at their southern distributional range limits and increasing abundance in other parts of their distribution (Saccharina latissima and Saccorhiza polyschides). The expansion of the introduced species Undaria pinnatifida was also registered. Drivers of observed changes in kelp forests distribution and abundance were assessed using experts’ opinions. Multiple possible drivers were identified, including global warming, sea urchin grazing, harvesting, pollution and fishing pressure, and their impact varied between geographical areas. Overall, the results highlight major threats for these ecosystems but also opportunities for conservation. Major requirements to ensure adequate protection of coastal kelp ecosystems along European coastlines are discussed, based on the local to regional gaps detected in the study.

    Keyword: Kelp forests Expert consultation Status and tempor

  • Bacon C, Look S, Gutiérrez-Pinto N, Antonelli A, Tan H, Kumar P et al. (2016)

    Species limits, geographical distribution and genetic diversity in Johannesteijsmannia (Arecaceae)

    Botanical Journal of the Linnean Society.

    Four species are recognized in the understorey palm genus Johannesteijsmannia (Arecaceae), all of which occur in close geographical proximity in the Malay Peninsula. We hypothesize that overlapping distributions are maintained by a lack of gene flow among species and that segregation along morphological trait or environmental axes confers ecological divergence and, hence, defines species limits. Although some species have sympatric distributions, differentiation was detected among species in morphological and genetic data, corroborating current species delimitation. Differences in niche breadth were not found to explain the overlapping distribution and co-existence of Johannesteijsmannia spp. Four species formed over the last 3 Mya, showing that diversity accumulated within a short time frame and wide range expansion has not occurred, potentially due to a lack of time for dispersal or the evolution of traits to facilitate movement. An assessment of genetic diversity is presented and, as expected, the widest distribution in the genus harbours the highest genetic diversity.

    Keywords: Malesia, Palmae, niche, phylogenetics, speciation

  • Ballesteros-Mejia L, Kitching I, Jetz W, Beck J (2016)

    Putting insects on the map: Near-global variation in sphingid moth richness along spatial and environmental gradients


    Despite their vast diversity and vital ecological role, insects are notoriously underrepresented in biogeography and conservation, and key broad-scale ecological hypotheses about them remain untested – largely due to generally incomplete and very coarse spatial distribution knowledge. Integrating records from publications, field work and natural history collections, we used a mixture of species distribution models and expert estimates to provide geographic distributions and emergent richness patterns for all ca. 1,000 sphingid moth species found outside the Americas in high spatial detail. Total sphingid moth richness, the first for a higher insect group to be documented at this scale, shows distinct maxima in the wet tropics of Africa and the Oriental with notable decay toward Australasia. Using multivariate models controlling for spatial autocorrelation, we found that primary productivity is the dominant environmental variable associated with moth richness, while temperature, contrary to our predictions, is an unexpectedly weak predictor. This is in stark contrast to the importance we identify for temperature as a niche variable of individual species. Despite divergent life histories, both main sub-groups of moths exhibit these relationships. Tribal-level deconstruction of richness and climatic niche patterns indicate idiosyncratic effects of biogeographic history for some of the less species-rich tribes, which in some cases exhibit distinct richness peaks away from the tropics. The study confirms, for a diverse insect group, overall richness associations of remarkable similarity to those documented for vertebrates and highlights the significant within-taxon structure that underpins emergent macroecological patterns. Results do not, however, meet predictions from vertebrate-derived hypotheses on how thermoregulation affects the strength of temperature-richness effects. Our study thus broadens the taxonomic focus in this data-deficient discourse. Our procedures of processing incomplete, scattered distribution data are a template for application to other taxa and regions.

    Keywords: Distribution modelling, Lepidoptera, Productivity, Spatial scale, Sphingidae, Tropics

  • Bellard C, Leroy B, Thuiller W, Rysman J, Courchamp F (2016)

    Major drivers of invasion risks throughout the world

    Ecosphere 7(3).

    In this paper, we investigate how climate, land use, habitat characteristics, and socioeconomic activities contribute to predict the current potential distributions of the “100 among the world's worst invasive alien species”. We calculated the predictive power of each of the 41 variables for the 95 species including a large number of plants, vertebrates and invertebrates. We then calibrated the species distribution models with a set of appropriate variables for each invasive alien species to predict the potential distribution of these species and identify the major regions of origin of the invasive alien species. We found that climate variables were primarily predictors of the distribution of the global invaders studied. In addition, the habitat characteristics were also important predictors following by the socioeconomic variables such as the nearest distance to airports, seaports and human population density. We show that the potential areas at the highest risk of invasions from these species are located in Western Europe, Eastern United States, Central America, the eastern coast of Australia, and some Indonesian islands. We argue that these potential hotspots of invasions should be monitored in priority to prevent new invasions from these species. This study provides evidence of the importance of considering both habitat characteristics, socioeconomic and climate change factors for the current and future predictions of biological invasions.

    Keywords: invasive species, socioeconomic, spatial risk