Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from France.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • Araújo R, Assis J, Aguillar R, Airoldi L, Bárbara I, Bartsch I et al. (2016)

    Status, trends and drivers of kelp forests in Europe: an expert assessment

    Biodiversity and Conservation 25(7) 1319-1348.

    A comprehensive expert consultation was conducted in order to assess the status, trends and the most important drivers of change in the abundance and geographical distribution of kelp forests in European waters. This consultation included an on-line questionnaire, results from a workshop and data provided by a selected group of experts working on kelp forest mapping and eco-evolutionary research. Differences in status and trends according to geographical areas, species identity and small-scale variations within the same habitat where shown by assembling and mapping kelp distribution and trend data. Significant data gaps for some geographical regions, like the Mediterranean and the southern Iberian Peninsula, were also identified. The data used for this study confirmed a general trend with decreasing abundance of some native kelp species at their southern distributional range limits and increasing abundance in other parts of their distribution (Saccharina latissima and Saccorhiza polyschides). The expansion of the introduced species Undaria pinnatifida was also registered. Drivers of observed changes in kelp forests distribution and abundance were assessed using experts’ opinions. Multiple possible drivers were identified, including global warming, sea urchin grazing, harvesting, pollution and fishing pressure, and their impact varied between geographical areas. Overall, the results highlight major threats for these ecosystems but also opportunities for conservation. Major requirements to ensure adequate protection of coastal kelp ecosystems along European coastlines are discussed, based on the local to regional gaps detected in the study.

    Keyword: Kelp forests Expert consultation Status and tempor


  • Bellard C, Genovesi P, Jeschke J (2016)

    Global patterns in threats to vertebrates by biological invasions

    Proceedings of the Royal Society B: Biological Sciences 283(1823) 20152454.

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity.

    Keyword: Kelp forests Expert consultation Status and tempor


  • Bellard C, Leroy B, Thuiller W, Rysman J, Courchamp F (2016)

    Major drivers of invasion risks throughout the world

    Ecosphere 7(3).

    In this paper, we investigate how climate, land use, habitat characteristics, and socioeconomic activities contribute to predict the current potential distributions of the “100 among the world's worst invasive alien species”. We calculated the predictive power of each of the 41 variables for the 95 species including a large number of plants, vertebrates and invertebrates. We then calibrated the species distribution models with a set of appropriate variables for each invasive alien species to predict the potential distribution of these species and identify the major regions of origin of the invasive alien species. We found that climate variables were primarily predictors of the distribution of the global invaders studied. In addition, the habitat characteristics were also important predictors following by the socioeconomic variables such as the nearest distance to airports, seaports and human population density. We show that the potential areas at the highest risk of invasions from these species are located in Western Europe, Eastern United States, Central America, the eastern coast of Australia, and some Indonesian islands. We argue that these potential hotspots of invasions should be monitored in priority to prevent new invasions from these species. This study provides evidence of the importance of considering both habitat characteristics, socioeconomic and climate change factors for the current and future predictions of biological invasions.

    Keywords: invasive species, socioeconomic, spatial risk


  • Bocksberger G, Schnitzler J, Chatelain C, Daget P, Janssen T, Schmidt M et al. (2016)

    Climate and the distribution of grasses in West Africa

    Journal of Vegetation Science.

    Questions Which environmental variables influence grass diversity in West Africa? What are the effects of climate and grass functional traits on the spatial patterns (richness and abundance) of the grass clades Andropogoneae, Paniceae and Chloridoideae? Location West Africa, demarcated by the Atlantic Ocean in the west and south (20° W and 4° N), the Sahara desert in the north (25° N) and the border between Niger and Chad in the east (20° E). Methods Based on 38 912 georeferenced occurrence records, we modelled the distribution of 302 grass species (51% of West African grass diversity). We integrated species richness, abundance and functional traits (life cycle, photosynthetic type and height) to determine the contribution of the most speciose grass clades (Andropogoneae, Paniceae and Chloridoideae) to overall grass diversity in West Africa. Results Precipitation is the variable most often influencing the species distribution models of grasses in West Africa. Richness and relative abundance of the tribe Andropogoneae show a centre of diversity in Sudanian savanna regions. The height of Andropogoneae species, generally >150 cm, is driving this ecological dominance. Species richness of the tribe Paniceae is more dispersed and shows two main centres of abundance: The southern regions with higher mean annual precipitation and tree density are dominated by C3 Paniceae species. The Sahelian regions in the north are dominated by short Paniceae species with the C4 NAD-ME photosynthetic subtype, as well as Chloridoideae possessing the same functional attributes. Conclusions Our study provides insight into the environmental correlates of grass species richness in West Africa and contributes to the much-needed research on tropical rangelands. Moreover, the integration of evolutionary history significantly improves our understanding of large-scale biodiversity patterns.

    Keywords: Andropogoneae, Chloridoideae, Maxent, Paniceae, Poaceae, Savanna, Species distribution modelling, West Africa, species richness


  • Boucher F, Lavergne S, Basile M, Choler P, Aubert S (2016)

    Evolution and biogeography of the cushion life form in angiosperms

    Perspectives in Plant Ecology, Evolution and Systematics 20 22-31.

    Cushion-forming species occur in all cold and dry environments worldwide, where they play important engineering roles. Understanding the origins of cushion plants may thus provide insights into the evolutionary assembly of biomes under extreme climatic conditions. Here we investigate the evolutionary and biogeographic history of cushions in Angiosperms based on a global checklist of all cushion plants, along with phylogenetic, climatic, and biogeographic information. Our aim is to measure the frequency of this evolutionary convergence and to identify its historic, environmental, and biogeographic drivers. We show that cushions appeared at least 115 times in Angiosperms and that they mainly belong to families that occupy the coldest and driest environments on Earth. We found that cushions have intensively diversified in the Himalayas, the Andes, or New Zealand, while other regions like Patagonia have probably been hubs enabling cushion species to migrate between different alpine regions. We conclude that the cushion life form is a remarkable example of convergent key innovation, which has favored the colonization of cold and dry habitats.

    Keywords: Alpine, Angiosperms, Arctic, Biogeography, Cushion plants, Evolutionary convergence


  • Branquart E, Brundu G, Buholzer S, Chapman D, Ehret P, Fried G et al. (2016)

    A prioritization process for invasive alien plant species incorporating the requirements of EU Regulation no. 1143/2014

    EPPO Bulletin 46(3) 603-617.

    When faced with a large species pool of invasive or potentially invasive alien plants, prioritization is an essential prerequisite for focusing limited resources on species which inflict high impacts, have a high rate of spread and can be cost-effectively managed. The prioritization process as detailed within this paper is the first tool to assess species for priority for risk assessment (RA) in the European Union (EU) specifically designed to incorporate the requirements of EU Regulation no. 1143/2014. The prioritization process can be used for any plant species alien to the EU, whether currently present within the territory or absent. The purpose of the prioritization is to act as a preliminarily evaluation to determine which species have the highest priority for RA at the EU level and may eventually be proposed for inclusion in the list of invasive alien species of EU concern. The preliminary risk assessment stage (Stage 1), prioritizes species into one of four lists (EU List of Invasive Alien Plants, EU Observation List of Invasive Alien Plants, EU List of Minor Concern and the Residual List) based on their potential for spread coupled with impacts. The impacts on native species and ecosystem functions and related ecosystem services are emphasized in line with Article 4.3(c) of the Regulation. Only those species included in the EU List of Invasive Alien Plants proceed to Stage 2 where potential for further spread and establishment coupled with evaluating preventative and management actions is evaluated. The output of Stage 2 is to prioritize those species which have the highest priority for a RA at the EU level or should be considered under national measures which may involve a trade ban, cessation of cultivation, monitoring, control, containment or eradication. When considering alien plant species for the whole of the EPPO region, or for species under the Plant Health Regulation, the original EPPO prioritization process for invasive alien plants remains the optimum tool. Un processus de priorisation pour les plantes exotiques envahissantes, intégrant les exigences du Règlement UE No 1143/2014 Face à un grand nombre d'espèces de plantes exotiques envahissantes, ou potentiellement envahissantes, prioriser est un pré-requis afin de concentrer des ressources limitées sur les espèces à forts impacts, ayant un potentiel important de dissémination, et pouvant être gérées de façon efficace. Le processus de priorisation, tel que décrit dans le présent article, est le premier outil permettant d’évaluer le besoin de réaliser, en priorité, pour une espèce, une évaluation du risque pour l'Union Européenne (UE), et ce en cohérence avec les exigences du Règlement UE No 1143/2014. Ce processus de priorisation peut être appliqué à toute plante exotique au territoire de l’UE, qu'elle soit présente ou non sur ce territoire. L'objectif est de déterminer, lors d'une étape préliminaire, les espèces prioritaires pour lesquelles une évaluation du risque doit être conduite au niveau de l’UE, et qui pourraient éventuellement être proposées à l'inscription au sein de la liste des espèces exotiques envahissantes préoccupantes pour l’UE. L’évaluation du risque préliminaire (étape 1), classe les espèces au sein de l'une des quatre listes (liste des plantes exotiques envahissantes pour l’UE, liste d'observation des plantes exotiques envahissantes pour l’UE, liste d'importance réduite pour l’UE et liste résiduelle) sur la base de leur capacité de dissémination et de leurs impacts. Pour les impacts, l'accent est mis sur les espèces autochtones, sur les fonctions écosystémiques, ainsi que les services écosystémiques, en cohérence avec l'article 4.3(c) du Règlement UE. Seulement les espèces classées dans la liste des plantes exotiques envahissantes pour l’UE passent à la seconde étape. Au cours de cette étape sont analysés les risques de dissémination et d’établissement, ainsi que les mesures prophylactiques ou mesures de gestion possibles. L’étape 2 classe les espèces les plus prioritaires pour la réalisation d'une évaluation du risque au niveau de l’UE, ou qui devraient faire l'objet de mesures nationales telles que l'interdiction du commerce, l'arrêt de la culture, la surveillance, le contrôle, l'enrayement ou l’éradication. Le processus de priorisation OEPP d'origine reste néanmoins l'outil optimal lorsque le processus est à réaliser sur l'ensemble de la région OEPP, ou pour des espèces réglementées dans le cadre phytosanitaire.

    Keywords: Alpine, Angiosperms, Arctic, Biogeography, Cushion plants, Evolutionary convergence


  • Brischoux F, Cotté C, Lillywhite H, Bailleul F, Lalire M, Gaspar P et al. (2016)

    Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    Biology letters 12(8) R861-R870.

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large.

    Keywords: Indo-Pacific oceans, biogeography, drifting, oceanic currents, sea snake


  • Calderón L, Campagna L, Wilke T, Lormee H, Eraud C, Dunn J et al. (2016)

    Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove

    BMC Evolutionary Biology 16(1) 237.

    Understanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations. Overall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat. We argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.

    Keywords: Climate change, Conservation, Demography, Genomics, Migratory birds, Paleoclimatic, Population genetic structure, niche modelling


  • Cheddadi R, Khater C (2016)

    Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species

    Quaternary Science Reviews 150 146-157.

    In this study, we quantified the mean January temperature (Tjan) and both winter (Pw) and summer (Ps) precipitation from three fossil pollen records from Lebanon. Tjan showed a strong correlation with the global temperature changes retrieved in the NGRIP Greenland ice core. The amplitude of ca. 8 °C between the Younger Dryas (YD) period and the Holocene is coherent with climate reconstructions from the Eastern Mediterranean. The overall amount of precipitation was also lower during the YD than during the Holocene but the contrast between Pw and Ps was much more reduced (less than 2 times) during the YD than during the Holocene (up to 8 times). Such different seasonal contrast compare to the present day is coherent with some climate proxies from the Levant that tend to indicate the presence of moisture during the last glacial period. In effect, the low Pw during the YD reflects the replacement of the forest ecosystem by a more shrubby or herbaceous vegetation. Concomitantly, the occurrence of an amount of precipitation higher than the current one during the summer season, along with a reduced evaporation, due to lower temperature, may have contributed to some local observed high lake levels in the area. During the last glacial period, Lebanon was not under a typical Mediterranean climate such as the one we know today, i.e. with a strong precipitation and temperature contrast between summer and winter seasons, but rather under a less contrasted climate. Mediterranean species persisted in this area due to the low amplitude of temperature change between the last glacial period and the Holocene as well as to an availability of moisture throughout the year instead of an occurrence mainly during the winter season as is the case today.

    Keywords: Holocene, Lebanon, Mediterranean, Quaternary climate, Refugia, Younger Dryas


  • Deblauwe V, Droissart V, Bose R, Sonké B, Blach-Overgaard A, Svenning J et al. (2016)

    Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics

    Global Ecology and Biogeography.

    Aim Species distribution modelling typically relies completely or partially on climatic variables as predictors, overlooking the fact that these are themselves predictions with associated uncertainties. This is particularly critical when such predictors are interpolated between sparse station data, such as in the tropics. The goal of this study is to provide a new set of satellite-based climatic predictor data and to evaluate its potential to improve modelled species–climate associations and transferability to novel geographical regions. Location Rain forests areas of Central Africa, the Western Ghats of India and South America. Methods We compared models calibrated on the widely used WorldClim station-interpolated climatic data with models where either temperature or precipitation data from WorldClim were replaced by data from CRU, MODIS, TRMM and CHIRPS. Each predictor set was used to model 451 plant species distributions. To test for chance associations, we devised a null model with which to compare the accuracy metric obtained for every species. Results Fewer than half of the studied rain forest species distributions matched the climatic pattern better than did random distributions. The inclusion of MODIS temperature and CHIRPS precipitation estimates derived from remote sensing each allowed for a better than random fit for respectively 40% and 22% more species than models calibrated on WorldClim. Furthermore, their inclusion was positively related to a better transferability of models to novel regions. Main conclusions We provide a newly assembled dataset of ecologically meaningful variables derived from MODIS and CHIRPS for download, and provide a basis for choosing among the plethora of available climate datasets. We emphasize the need to consider the method used in the production of climate data when working on a region with sparse meteorological station data. In this context, remote sensing data should be the preferred choice, particularly when model transferability to novel climates or inferences on causality are invoked.

    Keywords: Association test, CHIRPS, GLM, MODIS, MaxEnt, TRMM, WorldClim, ecological niche model, habitat suitability, null model