Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Denmark.
Extracted from the Mendeley GBIF Public Library.

List of publications

  • Padonou, E., Teka, O., Bachmann, Y., Schmidt, M., Lykke, A., Sinsin, B., 2015.

    Using species distribution models to select species resistant to climate change for ecological restoration of bowé in West Africa

    African Journal of Ecology n/a-n/a.

    Bowalization is a particular form of land degradation and leads to lateral expansion of ferricrete horizons. The process occurs only in tropical regions. In this study, the most adapted and resistant species towards climate change were identified on bowé. The 15 most common bowé species of the subhumid and semi-arid climate zones of Benin were submitted together with significant environmental variables (elevation, current bioclimatic variables, soil types) to three ecological niche modelling programmes (Maxent, Domain and GARP). For future prediction (2050), IPCC4/CIAT and IPCC5/CMIP5 climate data were applied. Asparagus africanus, Andropogon pseudapricus and Combretum nigricans were identified as the most resistant species for ecological restoration of bowé in the semi-arid climate zone and Asparagus africanus, Detarium microcarpum and Lannea microcarpa in the subhumid climate zone. The ‘Pull’ strategies were identified as appropriate for ecological restoration of bowé in Benin.

    Keywords: Benin, Bowé, climate change, ecological restoration, resistant species, subhumid and semi-arid climate zones

  • Wisz, M., Broennimann, O., Grønkjær, P., Møller, P., Olsen, S., Swingedouw, D., Hedeholm, R., Nielsen, E., Guisan, A., Pellissier, L., 2015.

    Arctic warming will promote Atlantic–Pacific fish interchange

    Nature Climate Change.

    Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific1, 2. Rapid warming has begun to lift this barrier3, potentially facilitating the interchange of marine biota between the two seas4. Here, we forecast the potential northward progression of 515 fish species following climate change, and report the rate of potential species interchange between the Atlantic and the Pacific via the Northwest Passage and the Northeast Passage. For this, we projected niche-based models under climate change scenarios and simulated the spread of species through the passages when climatic conditions became suitable. Results reveal a complex range of responses during this century, and accelerated interchange after 2050. By 2100 up to 41 species could enter the Pacific and 44 species could enter the Atlantic, via one or both passages. Consistent with historical and recent biodiversity interchanges5, 6, this exchange of fish species may trigger changes for biodiversity and food webs in the North Atlantic and North Pacific, with ecological and economic consequences to ecosystems that at present contribute 39% to global marine fish landings.

    Keywords: Benin, Bowé, climate change, ecological restoration, resistant species, subhumid and semi-arid climate zones

  • Kindt, R., Lillesø, J., van Breugel, P., Bingham, M., Demissew, S., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Moshi, H., Mulumba, J., Namaganda, M., Ndangalasi, H., Ruffo, C., Minani, V., Jamnadass, R., Graudal, L., 2014.

    Correspondence in forest species composition between the Vegetation Map of Africa and higher resolution maps for seven African countries

    Applied Vegetation Science 17(1) 162-171.

    Abstract Question How well does the forest classification system of the 1:5,000,000 vegetation map of Africa developed by Frank White correspond with classification systems and more extensive information on species assemblages of higher resolution maps developed for Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia? Methods We reviewed various national and sub-national vegetation maps for their potential in increasing the resolution of the African map. Associated documentation was consulted to compile species assemblages, and to identify indicator species, for national forest vegetation types. Indicator species were identified for each regional forest type by selecting those species that, among all the species listed for the same phytochorion (regional centre of endemism), were listed only for that forest type. For each of the national forest types, we counted the number of indicator species of the anticipated regional type. Floristic relationships (expressed by four different ecological distance measures) among national forest types were investigated based on distance-based redundancy analysis, permutational multivariate analysis of variance (PERMANOVA) using distance matrices and hierarchical clustering. Results For most of the national forests, the analysis of indicator species and floristic relationships confirmed the regional classification system for the majority of national forest types, including the allocation to different phytochoria. Permutation tests confirmed allocation of national forest types to regional typologies, although the number of possible permutations limited inferences for the Zambezian and Lake Victoria phytochoria. Two forest types from Ethiopia and Kenya did not correspond to regional forest types. Conclusions Our analysis provides support that as the classification systems are compatible, the resolution and information content of the vegetation map of Africa can be directly improved by adding information from national maps, probably leading to improved liability of its application domains. We found statistical evidence for a distinct Afromontane phytochorion. We suggest expanding the regional forest classification system with ‘Afromontane moist transitional forest’. Among the various application domains of the higher resolution maps, these maps allow for an enhanced phytochoristic analysis of eastern Africa.

    Keywords: Ethiopia, Frank White, Kenya, Kulczynski distance, Malawi, Rwanda, Tanzania, Uganda, Zambia, beta-sim distance, indicator species, phytochorion

  • Kristinsson, H., Heiðmarsson, S., Hansen, E., 2014.

    Lichens From Iceland In The Collection Of Svanhildur Svane

    Botanica Lithuanica 20(1) 14-18.

    Survey was made of the lichens collected by Svanhildur Svane in different parts of Iceland from 1949 to 1997 and deposited at the Botanical Museum of the University of Copenhagen (C). As a result, 11 species, Agonimia tristicula, Aspicilia mashiginensis, Fuscidea tenebrica, Gyalecta flotowii, Lecania baeomma, Lithographa tes- serata, Pyrenopsis grumulifera, Rimularia fuscosora, Steinia geophana, Thelignya lignyota and Umbilicaria nylanderiana, were recorded as new to Iceland, and 6 species were new to certain regions in Iceland as defined in the Nordic Lichen Flora.

    Keywords: greenland, iceland, lichens, svanhildur svane

  • Sandom, C., Faurby, S., Sandel, B., Svenning, J., 2014.

    Global late Quaternary megafauna extinctions linked to humans, not climate change

    Proceedings of the Royal Society/Biological Sciences 281(1787).

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.

    Keywords: climate change, macroecology, megafauna extinction, overkill, palaeoecology

  • Valle, M., Chust, G., del Campo, A., Wisz, M., Olsen, S., Garmendia, J., Borja, ., 2014.

    Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise

    Biological Conservation 170 74-85.

    In future decades, coastal ecosystems are expected to be exposed to increased risk of experiencing adverse consequences related to climate change, exacerbated by human induced pressures. The seagrass Zostera noltii forms meadows mainly within the intertidal zone, leading it to be particularly vulnerable to seawater temperature increase and sea level rise (SLR). Considering the presently declining situation and the predicted scenarios of increasing seawater temperature and SLR by the end of the 21st century, we assessed the response of Z. noltii to climate change (i) accounting for changes in seawater temperature at its entire biogeographical range level; and (ii) under SLR scenarios at estuary level (Oka estuary, Basque Country, south-eastern Bay of Biscay). Objectives were addressed coupling habitat suitability models with climate change simulations. By the end of the 21st century, seawater temperature increase will trigger a northward distributional shift of 888 km in the suitable habitat of the species, and a retreat of southernmost populations. The loss of southernmost populations due to climate change may imply future conservation problems. In contrast, SLR and derived changes in current velocities are expected to induce the landward migration of the species in the Oka estuary, increasing the available suitable intertidal areas (14–18%) to limits imposed by anthropogenic barriers. This modelling approach could lead to an advanced understanding of the species’ response to climate change effects; moreover, the information generated might support conservation actions towards the sites where the habitat would remain suitable for the species under climate change.

    Keywords: climate change, macroecology, megafauna extinction, overkill, palaeoecology

  • Cárdenas, P., Rapp, H., Klitgaard, A., Best, M., Thollesson, M., Tendal, O., 2013.

    Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region

    Zoological Journal of the Linnean Society 169(2) 251-311.

    Geodia species north of 60°N in the Atlantic appeared in the literature for the first time when Bowerbank described Geodia barretti and G. macandrewii in 1858 from western Norway. Since then, a number of species have been based on material from various parts of the region: G. simplex, Isops phlegraei, I. pallida, I. sphaeroides, Synops pyriformis, G. parva, G. normani, G. atlantica, Sidonops mesotriaena (now called G. hentscheli), and G. simplicissima. In addition to these 12 nominal species, four species described from elsewhere are claimed to have been identified in material from the northeast Atlantic, namely G. nodastrella and G. cydonium (and its synonyms Cydonium muelleri and Geodia gigas). In this paper, we revise the boreo-arctic Geodia species using morphological, molecular, and biogeographical data. We notably compare northwest and northeast Atlantic specimens. Biological data (reproduction, biochemistry, microbiology, epibionts) for each species are also reviewed. Our results show that there are six valid species of boreo-arctic Atlantic Geodia while other names are synonyms or mis-identifications. Geodia barretti, G. atlantica, G. macandrewii, and G. hentscheli are well established and widely distributed. The same goes for Geodia phlegraei, but this species shows a striking geographical and bathymetric variation, which led us to recognize two species, G. phlegraei and G. parva (here resurrected). Some Geodia are arctic species (G. hentscheli, G. parva), while others are typically boreal (G. atlantica, G. barretti, G. phlegraei, G. macandrewii). No morphological differences were found between specimens from the northeast and northwest Atlantic, except for G. parva. The Folmer cytochrome oxidase subunit I (COI) fragment is unique for every species and invariable over their whole distribution range, except for G. barretti which had two haplotypes. 18S is unique for four species but cannot discriminate G. phlegraei and G. parva. Two keys to the boreo-arctic Geodia are included, one based on external morphology, the other based on spicule morphology.

    Keywords: Geodiidae, amphi-Atlantic, atlantica, barretti, hentscheli, macandrewii, parva, phlegraei, sponge ground

  • Foote, A., Kaschner, K., Schultze, S., Garilao, C., Ho, S., Post, K., Higham, T., Stokowska, C., van der Es, H., Embling, C., Gregersen, K., Johansson, F., Willerslev, E., Gilbert, M., 2013.

    Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts

    Nature Communications 4 1677.

    The climatic changes of the glacial cycles are thought to have been a major driver of population declines and species extinctions. However, studies to date have focused on terrestrial fauna and there is little understanding of how marine species responded to past climate change. Here we show that a true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene–Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased rapidly, concurrent with a threefold increase in core suitable habitat. This study highlights that responses to climate change are likely to be species specific and difficult to predict. We estimate that the core suitable habitat of bowhead whales will be almost halved by the end of this century, potentially influencing future population dynamics.

    Keywords: Geodiidae, amphi-Atlantic, atlantica, barretti, hentscheli, macandrewii, parva, phlegraei, sponge ground

  • Gaiji, S., Chavan, V., Ariño, A., Otegui, J., Hobern, D., Sood, R., Robles, E., 2013.

    Content assessment of the primary biodiversity data Published through gbif network: status, challenges and potentials

    Biodiversity Informatics 8(August 2012) 94-172.

    With the establishment of the Global Biodiversity Information Facility (GBIF) in 2001 as an inter-governmental coordinating body, concerted efforts have been made during the past decade to establish a global research infrastructure to facilitate the publishing, discovery, and access to primary biodiversity data. The participants in GBIF have enabled the access to over 377 million records of such data as of August 2012. This is a remarkable achievement involving efforts at national, regional and global levels in multiple areas such as data digitization, standardization and exchange protocols. However concerns about the quality and ‘fitness for use’ of the data mobilized in particular for the scientific communities have grown over the years and must now be carefully considered in future developments. This paper is the first comprehensive assessment of the content mobilised so far through GBIF, as well as a reflexion on possible strategies to improve its ‘fitness for use’. The methodology builds on complementary approaches adopted by the GBIF Secretariat and the University of Navarra for the development of comprehensive content assessment methodologies. The outcome of this collaborative research demonstrates the immense value of the GBIF mobilized data and its potential for the scientific communities. Recommendations are provided to the GBIF community to improve the quality of the data published as well as priorities for future data mobilization.

    Keywords: content assessment, gap analysis, primary biodiversity data

  • Guo, W., Lambertini, C., Li, X., Meyerson, L., Brix, H., 2013.

    Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche.

    Global Change Biology 19(11) 3406-22.

    After its introduction into North America, Euro-Asian Phragmites australis became an aggressive invasive wetland grass along the Atlantic coast of North America. Its distribution range has since expanded to the middle, south and southwest of North America, where invasive P. australis has replaced millions of hectares of native plants in inland and tidal wetlands. Another P. australis invasion from the Mediterranean region is simultaneously occurring in the Gulf region of the United States and some countries in South America. Here, we analysed the occurrence records of the two Old World invasive lineages of P. australis (Haplotype M and Med) in both their native and introduced ranges using environmental niche models (ENMs) to assess (i) whether a niche shift accompanied the invasions in the New World; (ii) the role of biologically relevant climatic variables and human influence in the process of invasion; and (iii) the current potential distribution of these two lineages. We detected local niche shifts along the East Coast of North America and the Gulf Coast of the United States for Haplotype M and around the Mississippi Delta and Florida of the United States for Med. The new niche of the introduced Haplotype M accounts for temperature fluctuations and increased precipitation. The introduced Med lineage has enlarged its original subtropical niche to the tropics-subtropics, invading regions with a high annual mean temperature (> ca. 10 °C) and high precipitation in the driest period. Human influence is an important factor for both niches. We suggest that an increase in precipitation in the 20th century, global warming and human-made habitats have shaped the invasive niches of the two lineages in the New World. However, as the invasions are ongoing and human and natural disturbances occur concomitantly, the future distribution ranges of the two lineages may diverge from the potential distribution ranges detected in this study.

    Keywords: content assessment, gap analysis, primary biodiversity data