Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Germany.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • Araújo R, Assis J, Aguillar R, Airoldi L, Bárbara I, Bartsch I et al. (2016)

    Status, trends and drivers of kelp forests in Europe: an expert assessment

    Biodiversity and Conservation 25(7) 1319-1348.

    A comprehensive expert consultation was conducted in order to assess the status, trends and the most important drivers of change in the abundance and geographical distribution of kelp forests in European waters. This consultation included an on-line questionnaire, results from a workshop and data provided by a selected group of experts working on kelp forest mapping and eco-evolutionary research. Differences in status and trends according to geographical areas, species identity and small-scale variations within the same habitat where shown by assembling and mapping kelp distribution and trend data. Significant data gaps for some geographical regions, like the Mediterranean and the southern Iberian Peninsula, were also identified. The data used for this study confirmed a general trend with decreasing abundance of some native kelp species at their southern distributional range limits and increasing abundance in other parts of their distribution (Saccharina latissima and Saccorhiza polyschides). The expansion of the introduced species Undaria pinnatifida was also registered. Drivers of observed changes in kelp forests distribution and abundance were assessed using experts’ opinions. Multiple possible drivers were identified, including global warming, sea urchin grazing, harvesting, pollution and fishing pressure, and their impact varied between geographical areas. Overall, the results highlight major threats for these ecosystems but also opportunities for conservation. Major requirements to ensure adequate protection of coastal kelp ecosystems along European coastlines are discussed, based on the local to regional gaps detected in the study.

    Keyword: Kelp forests Expert consultation Status and tempor


  • Becker D, Willmes C, Bareth G, Weniger G (2016)

    A PLUGIN TO INTERFACE OPENMODELLER FROM QGIS FOR SPECIES' POTENTIAL DISTRIBUTION MODELLING

    ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-7 251-256.

    This contribution describes the development of a plugin for the geographic information system QGIS to interface the openModeller software package. The aim is to use openModeller to generate species’ potential distribution models for various archaeological applications (site catchment analysis, for example). Since the usage of openModeller’s command-line interface and configuration files can be a bit inconvenient, an extension of the QGIS user interface to handle these tasks, in combination with the management of the geographic data, was required. The implementation was realized in Python using PyQGIS and PyQT. The plugin, in combination with QGIS, handles the tasks of managing geographical data, data conversion, generation of configuration files required by openModeller and compilation of a project folder. The plugin proved to be very helpful with the task of compiling project datasets and configuration files for multiple instances of species occurrence datasets and the overall handling of openModeller. In addition, the plugin is easily extensible to take potential new requirements into account in the future.

    Keywords: ENM, Ecological Niche Modelling, Plugin, Python, QGIS, SPDM, Species Potential Distribution Modelling, openModeller


  • Bellard C, Genovesi P, Jeschke J (2016)

    Global patterns in threats to vertebrates by biological invasions

    Proceedings of the Royal Society B: Biological Sciences 283(1823) 20152454.

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity.

    Keywords: ENM, Ecological Niche Modelling, Plugin, Python, QGIS, SPDM, Species Potential Distribution Modelling, openModeller


  • Bellot S, Cusimano N, Luo S, Sun G, Zarre S, Gröger A et al. (2016)

    Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales

    Genome Biology and Evolution 8(7) 2214-2230.

    Cynomoriaceae, one of the last unplaced families of flowering plants, comprises one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites’ occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers.

    Keywords: Chondriome, Cynomorium, Mediterranean-Irano-Turanian, horizontal gene transfer, parasitic plants, plastome


  • Biber-Freudenberger L, Ziemacki J, Tonnang H, Borgemeister C (2016)

    Future Risks of Pest Species under Changing Climatic Conditions.

    PloS one 11(4) e0153237.

    Most agricultural pests are poikilothermic species expected to respond to climate change. Currently, they are a tremendous burden because of the high losses they inflict on crops and livestock. Smallholder farmers in developing countries of Africa are likely to suffer more under these changes than farmers in the developed world because more severe climatic changes are projected in these areas. African countries further have a lower ability to cope with impacts of climate change through the lack of suitable adapted management strategies and financial constraints. In this study we are predicting current and future habitat suitability under changing climatic conditions for Tuta absoluta, Ceratitis cosyra, and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses. We use presence records from different sources and bioclimatic variables to predict their habitat suitability using the maximum entropy modelling approach. We find that habitat suitability for B. invadens, C. cosyra and T. absoluta is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. Assuming a habitat suitability at three different threshold levels we assessed where each species is likely to be present under future climatic conditions and if this is likely to have an impact on productive agricultural areas. Our results can be used by African policy makers, extensionists and farmers for agricultural adaptation measures to cope with the impacts of climate change.

    Keywords: Chondriome, Cynomorium, Mediterranean-Irano-Turanian, horizontal gene transfer, parasitic plants, plastome


  • Bocksberger G, Schnitzler J, Chatelain C, Daget P, Janssen T, Schmidt M et al. (2016)

    Climate and the distribution of grasses in West Africa

    Journal of Vegetation Science.

    Questions Which environmental variables influence grass diversity in West Africa? What are the effects of climate and grass functional traits on the spatial patterns (richness and abundance) of the grass clades Andropogoneae, Paniceae and Chloridoideae? Location West Africa, demarcated by the Atlantic Ocean in the west and south (20° W and 4° N), the Sahara desert in the north (25° N) and the border between Niger and Chad in the east (20° E). Methods Based on 38 912 georeferenced occurrence records, we modelled the distribution of 302 grass species (51% of West African grass diversity). We integrated species richness, abundance and functional traits (life cycle, photosynthetic type and height) to determine the contribution of the most speciose grass clades (Andropogoneae, Paniceae and Chloridoideae) to overall grass diversity in West Africa. Results Precipitation is the variable most often influencing the species distribution models of grasses in West Africa. Richness and relative abundance of the tribe Andropogoneae show a centre of diversity in Sudanian savanna regions. The height of Andropogoneae species, generally >150 cm, is driving this ecological dominance. Species richness of the tribe Paniceae is more dispersed and shows two main centres of abundance: The southern regions with higher mean annual precipitation and tree density are dominated by C3 Paniceae species. The Sahelian regions in the north are dominated by short Paniceae species with the C4 NAD-ME photosynthetic subtype, as well as Chloridoideae possessing the same functional attributes. Conclusions Our study provides insight into the environmental correlates of grass species richness in West Africa and contributes to the much-needed research on tropical rangelands. Moreover, the integration of evolutionary history significantly improves our understanding of large-scale biodiversity patterns.

    Keywords: Andropogoneae, Chloridoideae, Maxent, Paniceae, Poaceae, Savanna, Species distribution modelling, West Africa, species richness


  • Branquart E, Brundu G, Buholzer S, Chapman D, Ehret P, Fried G et al. (2016)

    A prioritization process for invasive alien plant species incorporating the requirements of EU Regulation no. 1143/2014

    EPPO Bulletin 46(3) 603-617.

    When faced with a large species pool of invasive or potentially invasive alien plants, prioritization is an essential prerequisite for focusing limited resources on species which inflict high impacts, have a high rate of spread and can be cost-effectively managed. The prioritization process as detailed within this paper is the first tool to assess species for priority for risk assessment (RA) in the European Union (EU) specifically designed to incorporate the requirements of EU Regulation no. 1143/2014. The prioritization process can be used for any plant species alien to the EU, whether currently present within the territory or absent. The purpose of the prioritization is to act as a preliminarily evaluation to determine which species have the highest priority for RA at the EU level and may eventually be proposed for inclusion in the list of invasive alien species of EU concern. The preliminary risk assessment stage (Stage 1), prioritizes species into one of four lists (EU List of Invasive Alien Plants, EU Observation List of Invasive Alien Plants, EU List of Minor Concern and the Residual List) based on their potential for spread coupled with impacts. The impacts on native species and ecosystem functions and related ecosystem services are emphasized in line with Article 4.3(c) of the Regulation. Only those species included in the EU List of Invasive Alien Plants proceed to Stage 2 where potential for further spread and establishment coupled with evaluating preventative and management actions is evaluated. The output of Stage 2 is to prioritize those species which have the highest priority for a RA at the EU level or should be considered under national measures which may involve a trade ban, cessation of cultivation, monitoring, control, containment or eradication. When considering alien plant species for the whole of the EPPO region, or for species under the Plant Health Regulation, the original EPPO prioritization process for invasive alien plants remains the optimum tool. Un processus de priorisation pour les plantes exotiques envahissantes, intégrant les exigences du Règlement UE No 1143/2014 Face à un grand nombre d'espèces de plantes exotiques envahissantes, ou potentiellement envahissantes, prioriser est un pré-requis afin de concentrer des ressources limitées sur les espèces à forts impacts, ayant un potentiel important de dissémination, et pouvant être gérées de façon efficace. Le processus de priorisation, tel que décrit dans le présent article, est le premier outil permettant d’évaluer le besoin de réaliser, en priorité, pour une espèce, une évaluation du risque pour l'Union Européenne (UE), et ce en cohérence avec les exigences du Règlement UE No 1143/2014. Ce processus de priorisation peut être appliqué à toute plante exotique au territoire de l’UE, qu'elle soit présente ou non sur ce territoire. L'objectif est de déterminer, lors d'une étape préliminaire, les espèces prioritaires pour lesquelles une évaluation du risque doit être conduite au niveau de l’UE, et qui pourraient éventuellement être proposées à l'inscription au sein de la liste des espèces exotiques envahissantes préoccupantes pour l’UE. L’évaluation du risque préliminaire (étape 1), classe les espèces au sein de l'une des quatre listes (liste des plantes exotiques envahissantes pour l’UE, liste d'observation des plantes exotiques envahissantes pour l’UE, liste d'importance réduite pour l’UE et liste résiduelle) sur la base de leur capacité de dissémination et de leurs impacts. Pour les impacts, l'accent est mis sur les espèces autochtones, sur les fonctions écosystémiques, ainsi que les services écosystémiques, en cohérence avec l'article 4.3(c) du Règlement UE. Seulement les espèces classées dans la liste des plantes exotiques envahissantes pour l’UE passent à la seconde étape. Au cours de cette étape sont analysés les risques de dissémination et d’établissement, ainsi que les mesures prophylactiques ou mesures de gestion possibles. L’étape 2 classe les espèces les plus prioritaires pour la réalisation d'une évaluation du risque au niveau de l’UE, ou qui devraient faire l'objet de mesures nationales telles que l'interdiction du commerce, l'arrêt de la culture, la surveillance, le contrôle, l'enrayement ou l’éradication. Le processus de priorisation OEPP d'origine reste néanmoins l'outil optimal lorsque le processus est à réaliser sur l'ensemble de la région OEPP, ou pour des espèces réglementées dans le cadre phytosanitaire.

    Keywords: Andropogoneae, Chloridoideae, Maxent, Paniceae, Poaceae, Savanna, Species distribution modelling, West Africa, species richness


  • Brewer M, O'Hara R, Anderson B, Ohlemüller R (2016)

    Plateau: a new method for ecologically plausible climate envelopes for species distribution modelling

    Methods in Ecology and Evolution.

    cologists often wish to describe mathematical relationships between response variables and climate covariates in spatial models of species distribution; these relationships are commonly termed climate envelopes. There are many situations when the functional form of the envelopes should be either unimodal or monotonic, but current practice tends towards the use of either low-degree single-variable spline curves fitted as part of a Generalised Additive Model (GAM) or piecewise linear forms in software such as maxent. We argue that such curves are often inappropriate, as they: (i) can easily produce relationships which are ecologically implausible and (ii) frequently ignore interactions between multiple climate variables in a general regression context. We propose an novel alternative parametric form for climate envelopes that appeals to ecological plausibility and can encompass realistic features of species' presence/climate relationships on several variables simultaneously. The proposed plateau climate envelope function is applied via a spatial Bayesian species distribution model to data on two European tree species to demonstrate the approach. For Fagus sylvatica, a complete climate envelope is estimable, but for Quercus coccifera, only a partial climate envelope can be estimated as the geographical extent of the data set does not cover the full environmental niche for the species. We show that such an approach is practical, produces climate envelopes with an ecologically meaningful form and furthermore allows the inclusion of information external to the data set being analysed. We discuss the use of this new plateau climate envelope function in the context of ecological niche modelling and argue that in some instances ecological realism should be regarded as more important than the use of formal model comparison statistics

    Keywords: Bayesian spatialmodels, nichemodelling, species–climate interactions


  • Calderón L, Campagna L, Wilke T, Lormee H, Eraud C, Dunn J et al. (2016)

    Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove

    BMC Evolutionary Biology 16(1) 237.

    Understanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations. Overall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat. We argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.

    Keywords: Climate change, Conservation, Demography, Genomics, Migratory birds, Paleoclimatic, Population genetic structure, niche modelling


  • Castañeda-Álvarez N, Khoury C, Achicanoy H, Bernau V, Dempewolf H, Eastwood R et al. (2016)

    Global conservation priorities for crop wild relatives

    Nature Plants 2(4) 16022.

    The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.

    Keywords: Climate change, Conservation, Demography, Genomics, Migratory birds, Paleoclimatic, Population genetic structure, niche modelling