Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Chile.
Extracted from the Mendeley GBIF Public Library.

List of publications

  • Avalos V, Hernández J (2015)

    Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change

    Global Ecology and Conservation 4 459-469.

    In this study we projected the effect of anthropogenic climate change in endemic and restricted-range Andean bird species that spread out from the center of Bolivia to southeastern Peru. We also analyzed the representation of these species in protected areas. The ensemble forecasts from niche-based models indicated that 91–100% of species may reduce their range size under full and no dispersal scenarios, including five species that are currently threatened. The large range reduction (average 63%) suggests these mountain species may be threatened by climate change. The strong effects due to range species losses are predicted in the humid mountain forests of Bolivia. The representation of bird species also decreased in protected areas. Partial gap species (94–86%) are expected to increase over the present (62%). This suggests climate change and other non-climate stressors should be incorporated in conservations plans for the long-term persistence of these species. This study anticipates the magnitude of shifts in the distribution of endemic birds, and represents in the study area the first exploration of the representation of range-restricted Andean birds in protected areas under climate change.

    Keywords: Conservation, Gap analysis, Protected areas, Range size, Threatened species

  • Botero-delgadillo E, Bayly N, GÓmez C, PulgarÍn-r. P, PÁez C (2015)

    An assessment of the distribution, population size and conservation status of the Santa Marta Foliage-gleaner Automolus rufipectus: a Sierra Nevada de Santa Marta endemic

    Bird Conservation International 1-15.

    The Santa Marta Foliage-gleaner Automolus rufipectus is one of 19 endemic bird species found in the Sierra Nevada de Santa Marta (SNSM) in northern Colombia but until recently it was considered a sub-species of the Ruddy Foliage-gleaner Automolus rubiginosus. Consequently, published information on its distribution and ecology is lacking, and while it is classified as near-threatened, this designation was based on limited quantitative data. To improve our knowledge of the Santa Marta Foliage-gleaner’s geographical distribution, elevation range, population density, habitat use and conservation status, we analysed both historical and recent site locality records and carried out variable distance transects within forested habitats and shade coffee plantations. We modelled the environmental niche of the species and subsequently estimated its extent of occurrence and area of occupancy, as well as population size. Our results consistently showed that the distribution of the Santa Marta Foliage-gleaner is more restricted than previously considered, both geographically and by elevation (we redefine elevation range as 600–1,875 m). This suggests that the species is more at risk of habitat transformation and combined with our estimates of population size (< 10,000 individuals), it is likely that the species will be uplisted to a higher threat category. More positively, and contrary to published accounts, we found that approximately 40% of the species’ range lies within protected areas. Nevertheless, we recommend the implementation of strategies to maintain forest cover on the western flank of the SNSM and further research to better define the species’ habitat needs and population dynamics.

    Keywords: Conservation, Gap analysis, Protected areas, Range size, Threatened species

  • Botero-Delgadillo E, Bayly N, Escudero-Páez S, Moreno M (2015)

    Understanding the distribution of a threatened bird at multiple levels: A hierarchical analysis of the ecological niche of the Santa Marta Bush-Tyrant ( Myiotheretes pernix )

    The Condor 117(4) 629-643.

    ABSTRACT An understanding of the ecological factors determining bird species' distributions is essential for making informed conservation decisions. These data are especially important for range-restricted species, such as the Santa Marta Bush-Tyrant (Myiotheretes pernix), a threatened endemic of the Sierra Nevada de Santa Marta (SNSM) in Colombia. Here we adopt a novel hierarchical analysis to describe the bush-tyrant's ecological niche and infer the regional and local determinants of its limited distribution. We first describe habitat selection based on local habitat use and microhabitats used for foraging. We then use a geoprocessing modeling algorithm to combine habitat selection data with a climatic niche model. The resulting model produced an index of habitat suitability, which we converted into a predicted geographic distribution. Santa Marta Bush-Tyrants showed no clear habitat preferences, but favored forested and secondary growth habitats over open areas, at elevations between 2,100 and 3,300 m....

    Keywords: Colombia, Sierra Nevada de Santa Marta, distribution, foraging ecology, habitat use, microhabitat

  • Castellanos-frÍas E, Garcia de leÓn D, Bastida F, Gonzalez-andujar J (2015)

    Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change

    The Journal of Agricultural Science 1-10.

    Lolium rigidum L. (rigid ryegrass) is one of the most extensive and harmful weeds in winter cereal crops. A bioclimatic model for this species was developed using CLIMEX. The model was validated with records from North America and Oceania and used to assess the global potential distribution of L. rigidum under the current climate and under two climate change scenarios. Both scenarios represent contrasting temporal patterns of economic development and carbon dioxide (CO2) emissions. The projections under current climatic conditions indicated that L. rigidum does not occupy the full extent of the climatically suitable area available to it. Under future climate scenarios, the suitable potential area increases by 3·79% in the low-emission CO2 scenario and by 5·06% under the most extreme scenario. The model's projection showed an increase in potentially suitable areas in North America, Europe, South America and Asia; while in Africa and Oceania it indicated regression. These results provide the necessary knowledge for identifying and highlighting the potential invasion risk areas and for establishing the grounds on which to base the planning and management measures required.

    Keywords: Colombia, Sierra Nevada de Santa Marta, distribution, foraging ecology, habitat use, microhabitat

  • Escobar LE, Juarez C M (2015)

    First Report on Bat Mortalities on Wind Farms in Chile

    Gayana 79(1) 11-17.

    In Latin America there is a lack of scienti fi c reports of bat mortality caused by wind farms operation. We report for the fi rst time, clear evidence of bat mortalities from wind farms in Chile. We generated an ecological niche model of the affected species, Tadarida brasiliensis , to explore areas of potential species distribution overlapping with areas with distribution of wind farms in Chile. We found that T. brasiliensis potential distribution overlaps with the current and future distribution of wind farms in Chile. Rapid developments are currently being made within the wind energy industry in Chile. Future research should quantify the impact patterns of wind farms on wildlife, explore mitigation methods, and determine the areas with high biodiversity vulnerability in Chile.

    Keywords: Bat, Tadarida brasiliensi, ecological niche model

  • Fernández M, Navarro L, Apaza-Quevedo A, Gallegos S, Marques A, Zambrana-Torrelio C et al. (2015)

    Challenges and opportunities for the Bolivian Biodiversity Observation Network

    Biodiversity 1-13.

    Pragmatic methods to assess the status of biodiversity at multiple scales are required to support conservation decision-making. At the intersection of several major biogeographic zones, Bolivia has extraordinary potential to develop a monitoring strategy aligned with the objectives of the Group on Earth Observations Biodiversity Observation Network (GEO BON). Bolivia, a GEO Observer since 2005, is already working on the adequacy of national earth observations towards the objectives of the Global Earth Observation System of Systems (GEOSS). However, biodiversity is still an underrepresented component in this initiative. The integration of biodiversity into Bolivia’s GEO framework would confirm the need for a country level biodiversity monitoring strategy, fundamental to assess the progress towards the 2020 Aichi targets. Here we analyse and discuss two aspects of the process of developing such a strategy: (1) identification of taxonomic, temporal and spatial coverage of biodiversity data to detect both ava...

    Keywords: Bolivia, GEO BON, baseline, big data integration, biodiversity, monitoring

  • Hinojosa L, Gaxiola A, Pérez M, Carvajal F, Campano M, Quattrocchio M et al. (2015)

    Non-congruent fossil and phylogenetic evidence on the evolution of climatic niche in the gondwana genus Nothofagus

    Journal of Biogeography.

    Aim We used fossil and phylogenetic evidence to reconstruct climatic niche evolution in Nothofagus, a Gondwana genus distributed in tropical and temperate latitudes. To assess whether the modern distribution of the genus can be explained by the tropical conservatism hypothesis, we tested three predictions: (1) species from all Nothofagus subgenera coexisted under mesothermal climates during the early Eocene; (2) tolerance to microthermal climates evolved during the Eocene–Oligocene cooling from an ancestor that grew under mesothermal conditions; and (3) the climatic niche in Nothofagus is phylogenetically conserved. Location Australia, New Zealand, New Caledonia, Papua-New Guinea and South America. Methods We estimated the palaeoclimate of the Early Eocene, fossil-bearing Ligorio Marquez Formation (LMF, Chile), using coexistence and leaf physiognomic analysis. We reconstructed ancestral climatic niches of Nothofagus using extant species distributions and a time-calibrated phylogeny. Finally, we used the morphological disparity index and phylogenetic generalized least squares to assess whether climatic variables follow a Brownian motion (BM) or an Ornstein–Uhlenbeck (OU) model of evolution. Results Our palaeoclimatic estimates suggest mesothermal conditions for the LMF, where macrofossils associated with subgenera Lophozonia and possibly Fuscospora, and fossil pollen of Brassospora and Fuscospora/Nothofagus were recorded. These results are not supported by our phylogenetic analysis, which instead suggests that the ancestor of Nothofagus lived under microthermal to marginally mesothermal conditions, with tolerance to mesothermal conditions evolving only in the subgenus Brassospora. Precipitation and temperature dimensions of the realized climatic niche fit with a gradual BM or constrained OU model of evolution. Main Conclusions Our results suggest that the use of phylogenetic reconstruction methods based only on present distributions of extant taxa to infer ancestral climatic niches is likely to lead to erroneous results when climatic requirements of ancestors differ from their extant descendants, or when much extinction has occurred.

    Keywords: Eocene, Gondwana, Nothofagaceae, into the tropics, niche modelling, palaeoclimate, phylogenetic signal, tropical conservatism hypothesis

  • Peñaranda D, Simonetti J (2015)

    Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline

    Conservation Biology n/a-n/a.

    The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large-sized taxa were under decline, whereas small-sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data-deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species-by-species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. Predección y Definición de Prioridades de Conservación para Mamíferos de Bolivia con Base en Correlaciones Biológicas del Riesgo de Declinación.

    Keywords: bosque aleatorio, extinción, extinction, modelado predictivo, population trend, predictive modeling, random forest, species vulnerability, tendencia poblacional, vulnerabilidad de especies

  • Rosenfeld S, Aldea C, Mansilla A, Marambio J, Ojeda J (2015)

    Richness, systematics, and distribution of molluscs associated with the macroalga Gigartina skottsbergii in the Strait of Magellan, Chile: A biogeographic affinity study

    ZooKeys 519 49-100.

    Knowledge about the marine malacofauna in the Magellan Region has been gained from many scientific expeditions that were carried out during the 19th century. However, despite the information that exists about molluscs in the Magellan Region, there is a lack of studies about assemblages of molluscs co-occurring with macroalgae, especially commercially exploitable algae such as Gigartina skottsbergii, a species that currently represents the largest portion of carrageenans within the Chilean industry. The objective of this study is to inform about the richness, systematics, and distribution of the species of molluscs associated with natural beds in the Strait of Magellan. A total of 120 samples from quadrates of 0.25 m2 were obtained by SCUBA diving at two sites within the Strait of Magellan. Sampling occurred seasonally between autumn 2010 and summer 2011: 15 quadrates were collected at each site and season. A total of 852 individuals, corresponding to 42 species of molluscs belonging to Polyplacophora (9 species), Gastropoda (24), and Bivalvia (9), were identified. The species richness recorded represents a value above the average richness of those reported in studies carried out in the last 40 years in sublittoral bottoms of the Strait of Magellan. The biogeographic affinity indicates that the majority of those species (38%) present an endemic Magellanic distribution, while the rest have a wide distribution in the Magellanic-Pacific, Magellanic-Atlantic, and Magellanic-Southern Ocean. The molluscs from the Magellan Region serve as study models for biogeographic relationships that can explain long-reaching patterns and are meaningful in evaluating possible ecosystemic changes generated by natural causes or related to human activities.

    Keywords: Magellan Region, Mollusca, algae beds, biodiversity, biogeography

  • Sandel B, Gutiérrez A, Reich P, Schrodt F, Dickie J, Kattge J (2015)

    Estimating themissing species bias in plant trait measurements

    Journal of Vegetation Science 26(5) 828-838.

    Aim Do plant trait databases represent a biased sample of species, and if so, can that bias be corrected? Ecologists are increasingly collecting and analysing data on plant functional traits, and contributing them to large plant trait databases. Many applications of such databases involve merging trait measurements with other data such as species distributions in vegetation plots; a process that invariably produces matrices with incomplete trait and species data. Typically, missing data are simply ignored and it is assumed that the missing species are missing at random. Methods Here, we argue that this assumption is unlikely to be valid and propose an approach for estimating the strength of the bias regarding which species are represented in trait databases. The method leverages the fact that, within a given database, some species have many measurements of a trait and others have few (high vs low measurement intensity). In the absence of bias, there should be no relationship between measurement intensity and trait values. We demonstrate the method using five traits that are part of the TRY database, a global archive of plant traits. Our method also leads naturally to a correction for this bias, which we validate and apply to two examples. Results Specific leaf area and seed mass were strongly positively biased (frequently measured species had higher trait values than rarely measured species), leaf nitrogen per unit mass and maximum height were moderately negatively biased, and maximum photosynthetic capacity per unit leaf area was weakly negatively biased. The bias-correction method yielded greatly improved estimates in the validation tests for the two most biased traits. Further, in our two applications, ecological interpretations were shown to be sensitive to uncorrected bias in the data. Conclusions Species inclusion in trait databases appears to be strongly biased in some cases, and failure to correct this can lead to incorrect conclusions.

    Keywords: Bias, Leaf nitrogen, Maximum height, Missing data, Photosynthesis rate, Plant functional trait, Seed mass, Specific leaf area