Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Belgium.
Extracted from the Mendeley GBIF Public Library.

List of publications

  • Byrne M, Gall M, Wolfe K, Agüera A (2016)

    From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean

    Global Change Biology.

    Due to climatic warming, Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high-risk invader of the sub-Antarctic and Antarctic. To assess the potential range expansion of A. amurensis to the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adult A. amurensis with respect to present day and future climate scenarios using habitat temperature data to construct species distribution models (SDM). To integrate the physiological response of the dispersive phase we determined the thermal envelope of larval development to assess their performance in present day and future thermal regimes and the potential for success of A. amurensis in poleward latitudes. The SDM indicated that the thermal 'niche' of the adult stage correlates with a 0-17 °C and 1-22.5 °C range, in winter and summer, respectively. As the ocean warms the range of A. amurensis in Australia will contract, while more southern latitudes will have conditions favorable for range expansion. Successful fertilisation occurred from 3-23.8 °C. By day 12, development to the early larval stage was successful from 5.5-18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5-19.2 °C with a lower and upper critical limit of 2.6 °C and 20.3 °C, respectively. Our data predict that A. amurensis faces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica. This article is protected by copyright. All rights reserved.

    Keywords: Antarctica, asteroid, climate change, introduced species, larva, ocean warming, southern migration, thermal tolerance

  • Coro G, Magliozzi C, Vanden Berghe E, Bailly N, Ellenbroek A, Pagano P (2016)

    Estimating absence locations of marine species from data of scientific surveys in OBIS

    Ecological Modelling 323 61-76.

    Estimating absence locations of a species is important in conservation biology and conservation planning. For instance, using reliable absence as much as presence information, species distribution models can enhance their performance and produce more accurate predictions of the distribution of a species. Unfortunately, estimating reliable absence locations is difficult and often requires a deep knowledge of the species’ distribution and of its abiotic and biotic environmental preferences and tolerance. In this paper, we propose a methodology to reconstruct reliable absence information from presence-only information, and the conditions that those presence-only data have to meet to make this possible. Large species occurrence data collections (otherwise called occurrence datasets) contain high quality and expert-reviewed species observation records from scientific surveys. These surveys can be used to retrieve species presence locations, but they also record places where the species in their target list were not observed. Although these absences could be simply due to sampling variation, it is possible to intersect many of these reports to estimate true absence locations, i.e. those due to habitat unsuitability or geographical hindrances. In this paper, we present a method to generate reliable absence locations of this type for marine species, using scientific surveys reports contained in the Ocean Biogeographic Information System (OBIS), an authoritative species occurrence dataset. Our method spatially aggregates information from surveys focussing on the same target species. It detects absence locations for a given species as those locations in which repeated surveys (that included the species of interest in their target list) reported information only on other species. We qualitatively demonstrate the reliability of our method using distribution records of the Atlantic cod as a case study. Additionally, we quantitatively estimate its performance using another authoritative large species occurrence dataset, the Global Biodiversity Information Facility (GBIF). We also demonstrate that our approach has higher accuracy and presents complementary behaviour with respect to another method using environmental envelopes. Our process can support species distribution models (as well as other types of models, e.g. climate change models) by providing reliable data to presence/absence approaches. It can manage regional as well as global scale scenarios and runs within a collaborative e-Infrastructure (D4Science) that publishes it as-a-Service, allowing biologists to reproduce, repeat and share experimental results.

    Keywords: Absence locations, Ecological niche modelling, Marine biodiversity, Occurrence data, Scientific surveys, Species distribution maps

  • Deblauwe V, Droissart V, Bose R, Sonké B, Blach-Overgaard A, Svenning J et al. (2016)

    Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics

    Global Ecology and Biogeography.

    Aim Species distribution modelling typically relies completely or partially on climatic variables as predictors, overlooking the fact that these are themselves predictions with associated uncertainties. This is particularly critical when such predictors are interpolated between sparse station data, such as in the tropics. The goal of this study is to provide a new set of satellite-based climatic predictor data and to evaluate its potential to improve modelled species–climate associations and transferability to novel geographical regions. Location Rain forests areas of Central Africa, the Western Ghats of India and South America. Methods We compared models calibrated on the widely used WorldClim station-interpolated climatic data with models where either temperature or precipitation data from WorldClim were replaced by data from CRU, MODIS, TRMM and CHIRPS. Each predictor set was used to model 451 plant species distributions. To test for chance associations, we devised a null model with which to compare the accuracy metric obtained for every species. Results Fewer than half of the studied rain forest species distributions matched the climatic pattern better than did random distributions. The inclusion of MODIS temperature and CHIRPS precipitation estimates derived from remote sensing each allowed for a better than random fit for respectively 40% and 22% more species than models calibrated on WorldClim. Furthermore, their inclusion was positively related to a better transferability of models to novel regions. Main conclusions We provide a newly assembled dataset of ecologically meaningful variables derived from MODIS and CHIRPS for download, and provide a basis for choosing among the plethora of available climate datasets. We emphasize the need to consider the method used in the production of climate data when working on a region with sparse meteorological station data. In this context, remote sensing data should be the preferred choice, particularly when model transferability to novel climates or inferences on causality are invoked.

    Keywords: Association test, CHIRPS, GLM, MODIS, MaxEnt, TRMM, WorldClim, ecological niche model, habitat suitability, null model

  • Janssens S, Vandelook F, De Langhe E, Verstraete B, Smets E, Vandenhouwe I et al. (2016)

    Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia.

    The New phytologist.

    Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species-rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo-Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera - Ensete, Musa and Musella - originated in northern Indo-Burma during the early Eocene. Musa species dispersed from 'northwest to southeast' into Southeast Asia with only few back-dispersals towards northern Indo-Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.

    Keywords: Association test, CHIRPS, GLM, MODIS, MaxEnt, TRMM, WorldClim, ecological niche model, habitat suitability, null model

  • Pârâu L, Strubbe D, Mori E, Menchetti M, Ancillotto L, Kleunen A et al. (2016)

    Rose-ringed Parakeet Populations and Numbers in Europe: A Complete Overview

    The Open Ornithology Journal 9(1) 1-13.

    Purpose: Alien species are considered one of the major causes contributing to the current loss of biodiversity. Over the past few decades, a large and increasing number of alien species have become invasive in many parts of the world. Their impacts range from competition for resources with native species to damage of urban infrastructure. In Europe, over a thousand alien species are now established, of which 74 are birds. Among 12 established alien parrot species in Europe, Introduction: The Rose-ringed Parakeet (RRP) Psittacula krameri (Scopoli, 1769) is the most abundant and widespread. Since the 1960's, RRPs have established more than 100 wild populations in several European countries. For Western Europe, long-term demographic data indicate the species has grown considerably in number, although some populations have failed to persist. Data: Is scarce and dispersed for countries in Central, Eastern and Northern Europe. Therefore, here we present detailed demographic data of RRP for 90 populations in 10 European countries. Furthermore, we present information on the status of the species in another 27 European countries, for which previously no data were published. Conclusion: Our synthesis reveals a positive demographic trend across the continent, although locally, some populations appear to have reached carrying capacity.

    Keywords: Demography, Europe, Invasive alien species, Parrots, Population, Psittaciformes

  • Adriaens, T., Sutton-Croft, M., Owen, K., Brosens, D., van Valkenburg, J., Kilbey, D., Groom, Q., Ehmig, C., Thürkow, F. V, , P., Schneider K (2015)

    Trying to engage the crowd in recording invasive alien species in Europe: experiences from two smartphone applications in northwest Europe

    Management of Biological Invasions 6(2) 215-225.

    New technologies such as smartphone appli cation software (apps) are increasingly used to reach a wider audience on the subject of invasive alien species (IAS) and to involve the public in recording them. In this paper we pr esent two of the more recent smartphone app lications for IAS recording in northwest Europe, the RINSE That’s Invasive! app and the KORINA app. We present an overview of available smartphone apps for IAS recording in Europe and addr ess issues of data integra tion, data openness, data quality, data harmonisation and da tabase interoperability. Finally, we make some recommendations for future app design

    Keywords: biological recording, citizen science, early war

  • Ancillotto L, Strubbe D, Menchetti M, Mori E (2015)

    An overlooked invader? Ecological niche, invasion success and range dynamics of the Alexandrine parakeet in the invaded range

    Biological Invasions.

    Parrots and parakeets (Aves, Psittaciformes) are prominent among avian invaders, as more than 16 % of living species are currently breeding with at least one population outside their native range. Most studies have been carried out on ring-necked and monk parakeets, as they are the most successful invasive parrots globally. Recently, however, reports of invasive Alexandrine parakeet Psittacula eupatria have increased. Here, we summarize the current knowledge on the current occurrence of Alexandrine parakeets outside the natural range and assess the degree of niche conservatism during the invasion process. Our results show that Alexandrine parakeets have established invasive populations predominantly in Europe, parts of the Middle east and Far Eastern countries such as Japan and Singapore. During the ongoing invasion of Europe, the Alexandrine parakeet considerably expanded its niche into colder climates with respect to those occupied in the native range. Our results offer some support to the hypothesis that interspecific facilitation with previously established ring-necked parakeets Psittacula krameri may contribute to niche expansion and invasion success of congeneric Alexandrine parakeets. Species Distribution Models including both native and invaded range occurrence data predict a high invasion risk across multiple parts of the globe where the species is currently not yet present, thus indicating a high potential for the species for further invasion success and range expansion.

    Keywords: Interspecific facilitation, Niche conservatism, Psittaciformes, Psittacula eupatria, Range expansion

  • Antonelli A, Zizka A, Silvestro D, Scharn R, Cascales-Miñana B, Bacon C (2015)

    An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics.

    Frontiers in genetics 6 130.

    Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms) between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the latitudinal biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics), as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having "pumped out" more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.

    Keywords: Angiosperms, Latitudinal diversity gradient, biogeography, diversification rates, evolution, phylogenetics, tropical biodiversity

  • Dellicour S, Michez D, Rasplus J, Mardulyn P (2015)

    Impact of past climatic changes and resource availability on the population demography of three food-specialist bees.

    Molecular ecology.

    Past climate change is known to have strongly impacted current patterns of genetic variation of animals and plants in Europe. However, ecological factors also have the potential to influence demographic history, and thus patterns of genetic variation. In this study, we investigated the impact of past climate, and also the potential impact of host plant species abundance, on intraspecific genetic variation in three co-distributed and related specialized solitary bees of the genus Melitta with very similar life history traits and dispersal capacities. We sequenced five independent loci in samples collected from the three species. Our analyses revealed that the species associated with the most abundant host plant species (Melitta leporina) displays unusually high genetic variation, to an extent that is seldom reported in phylogeographic studies of animals and plants. This suggests a potential role of food resource abundance in determining current patterns of genetic variation in specialized herbivorous insects. Patterns of genetic variation in the two other species indicated lower overall levels of diversity, and that M. nigricans could have experienced a recent range expansion. Ecological niche modelling of the three Melitta species and their main host plant species suggested a strong reduction in range size during the last glacial maximum. Comparing observed sequence data with data simulated using spatially explicit models of coalescence suggests that M. leporina recovered a range and population size close to their current levels at the end of the last glaciation, and confirms recent range expansion as the most likely scenario for M. nigricans. Overall, this study illustrates that both demographic history and ecological factors may have contributed to shape current phylogeographic patterns. This article is protected by copyright. All rights reserved.

    Keywords: coalescent simulations, demographic history, food specialization, intraspecific diversity, phylogeography, phytophagous insects, population fragmentation

  • Ertz D, Diederich P (2015)

    Dismantling Melaspileaceae: a first phylogenetic study of Buelliella, Hemigrapha, Karschia, Labrocarpon and Melaspilea

    Fungal Diversity.

    Melaspileaceae is a heterogeneous group of Ascomycota including lichenized, lichenicolous and saprobic fungi. A first phylogenetic study of Melaspileaceae is presented and is based on mtSSU and nuLSU sequence data. We obtained 49 new sequences for 28 specimens representing 15 species. The genera Buelliella, Hemigrapha, Karschia, Labrocarpon and Melaspilea s. str. are included in a molecular phylogeny for the first time. Melaspileaceae is recovered as polyphyletic, with members placed in two main lineages of Dothideomycetes. Melaspilea s. str. is included in Eremithallales. Eremithallaceae is placed in synonymy with Melaspileaceae. The genus Encephalographa is placed in Melaspileaceae. The genera Buelliella, Karschia, Labrocarpon and several members of Melaspilea are demonstrated to belong to Asterinales, while Hemigrapha is confirmed in this order. The genera Melaspileella, Melaspileopsis, Stictographa are reinstated for former Melaspilea species now placed in Asterinales. Karschia cezannei is described as new, and the new combinations Melaspilea costaricensis, M. enteroleuca, M. urceolata, Melaspileella proximella and Melaspileopsis diplasiospora are made. Melaspileaceae as newly defined includes lichenized and saprobic species. The lichenicolous and saprobic life styles form different intermixed lineages in Asterinales that do not include lichenized taxa. The phylogenetic data provide a first framework for dismantling further the genus Melaspilea for which most of the species are expected to belong to Asterinales.

    Keywords: Asterinales, Eremithallales, Lichenicolous fungi, Phylogeny, Taxonomy