Uses of GBIF in scientific research

Peer-reviewed research citing GBIF as a data source, with at least one author from Australia.
For all researches, please visit our "Peer-reviewed publications" page.

List of publications

  • Aljaryian R, Kumar L (2016)

    Changing global risk of invading greenbug Schizaphis graminum under climate change

    Crop Protection 88 137-148.

    The geographical range, abundance, growth rate, survival and mortality of insects are largely influenced by abiotic factors such as temperature and humidity. When suitable, these factors can positively influence the abundance of insect pests. It is in this light that the influence of climate change, particularly global warming, has direct bearing to crop protection. In this study, we simulated the potential distribution of the greenbug or wheat aphid Schizaphis graminum (Rondani) (Aphididae), a major global pest of wheat, using the climate matching tool CLIMEX (CLIMatic indEX) in global warming scenarios. To predict the potential distribution of the insect on CLIMEX at time periods 2030, 2070 and 2100, we utilize two global climate models (GCMs) at two emission scenarios. The result of CLIMEX modelling shows that the favourable climatic areas for S. graminum are subtropical to temperate at the current time. With global warming, under different scenarios current suitable and highly suitable areas in the northern hemisphere are expected to expand to higher latitudes by 2030 towards 2100; while areas in the southern hemisphere, where the pest’s living areas already have high temperature ranges, the occurrence of the pest will contract by 2030 since temperatures will exceed its heat limits. This study assists in predicting the potential risk areas that may be threatened by this pest in the future, providing supportive information for agricultural management practices and aid in the preparation of strategic plans to avoid possible economic damage posed by future expansion of the pest population due to climate change.

    Keywords: CLIMEX, Climate change, Greenbug, Wheat aphid

  • Araújo R, Assis J, Aguillar R, Airoldi L, Bárbara I, Bartsch I et al. (2016)

    Status, trends and drivers of kelp forests in Europe: an expert assessment

    Biodiversity and Conservation 25(7) 1319-1348.

    A comprehensive expert consultation was conducted in order to assess the status, trends and the most important drivers of change in the abundance and geographical distribution of kelp forests in European waters. This consultation included an on-line questionnaire, results from a workshop and data provided by a selected group of experts working on kelp forest mapping and eco-evolutionary research. Differences in status and trends according to geographical areas, species identity and small-scale variations within the same habitat where shown by assembling and mapping kelp distribution and trend data. Significant data gaps for some geographical regions, like the Mediterranean and the southern Iberian Peninsula, were also identified. The data used for this study confirmed a general trend with decreasing abundance of some native kelp species at their southern distributional range limits and increasing abundance in other parts of their distribution (Saccharina latissima and Saccorhiza polyschides). The expansion of the introduced species Undaria pinnatifida was also registered. Drivers of observed changes in kelp forests distribution and abundance were assessed using experts’ opinions. Multiple possible drivers were identified, including global warming, sea urchin grazing, harvesting, pollution and fishing pressure, and their impact varied between geographical areas. Overall, the results highlight major threats for these ecosystems but also opportunities for conservation. Major requirements to ensure adequate protection of coastal kelp ecosystems along European coastlines are discussed, based on the local to regional gaps detected in the study.

    Keyword: Kelp forests Expert consultation Status and tempor

  • Byrne M, Gall M, Wolfe K, Agüera A (2016)

    From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean

    Global Change Biology.

    Due to climatic warming, Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high-risk invader of the sub-Antarctic and Antarctic. To assess the potential range expansion of A. amurensis to the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adult A. amurensis with respect to present day and future climate scenarios using habitat temperature data to construct species distribution models (SDM). To integrate the physiological response of the dispersive phase we determined the thermal envelope of larval development to assess their performance in present day and future thermal regimes and the potential for success of A. amurensis in poleward latitudes. The SDM indicated that the thermal 'niche' of the adult stage correlates with a 0-17 °C and 1-22.5 °C range, in winter and summer, respectively. As the ocean warms the range of A. amurensis in Australia will contract, while more southern latitudes will have conditions favorable for range expansion. Successful fertilisation occurred from 3-23.8 °C. By day 12, development to the early larval stage was successful from 5.5-18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5-19.2 °C with a lower and upper critical limit of 2.6 °C and 20.3 °C, respectively. Our data predict that A. amurensis faces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica. This article is protected by copyright. All rights reserved.

    Keywords: Antarctica, asteroid, climate change, introduced species, larva, ocean warming, southern migration, thermal tolerance

  • Congrains C, Carvalho A, Miranda E, Cumming G, Henry D, Manu S et al. (2016)

    Genetic and paleomodelling evidence of the population expansion of the cattle egret Bubulcus ibis in Africa during the climatic oscillations of the Late Pleistocene

    Journal of Avian Biology.

    Increasing aridity during glacial periods produced the retraction of forests and the expansion of arid and semi-arid environments in Africa, with consequences for birds. Cattle egret (Bubulcus ibis) is a dispersive species that prefers semiarid environments and requires proximity to bodies of water. We expected that climatic oscillations led to the expansion of the range of the cattle egret during arid periods, such as the Last Maximum Glacial (LGM) and contraction of distribution during the Last Interglacial (LIG) period, resulting in contact of populations previously isolated. We investigated this hypothesis by evaluating the genetic structure and population history of 15 cattle egret breeding colonies located in West and South Africa using the mitochondrial DNA (mtDNA) control region, mtDNA ATPase 8 and 6, and an intron of nuclear gene transforming growth factor beta-2. Occurrence data and bioclimatic information were used to generate ecological niche models of three periods (present, LGM and LIG). We used the genetic and paleomodelling data to assess the responses of the cattle egret from Africa to the climatic oscillations during the late Pleistocene. Genetic data revealed low levels of genetic differentiation, signs of isolation-by-distance, as well as recent increases in effective population size that started during the LGM. The observed low genetic structure may be explained by recent colonization events due to the demographic expansion following the last glacial period and by dispersal capacity of this species. The paleomodels corroborated the expansion during the LGM, and a more restricted potential distribution during the LIG. Our findinds supports the hypothesis that the species range of the cattle egret expanded during arid periods and contracted during wet periods.

    Keywords: Antarctica, asteroid, climate change, introduced species, larva, ocean warming, southern migration, thermal tolerance

  • Delgado-Baquerizo M, Reich P, García-Palacios P, Milla R (2016)

    Biogeographic bases for a shift in crop C : N : P stoichiometries during domestication.

    Ecology letters.

    We lack both a theoretical framework and solid empirical data to understand domestication impacts on plant chemistry. We hypothesised that domestication increased leaf N and P to support high plant production rates, but biogeographic and climate patterns further influenced the magnitude and direction of changes in specific aspects of chemistry and stoichiometry. To test these hypotheses, we used a data set of leaf C, N and P from 21 herbaceous crops and their wild progenitors. Domestication increased leaf N and/or P for 57% of the crops. Moreover, the latitude of the domestication sites (negatively related to temperature) modulated the domestication effects on P (+), C (-), N : P (-) and C : P (-) ratios. Further results from a litter decomposition assay showed that domestication effects on litter chemistry affected the availability of soil N and P. Our findings draw attention to evolutionary effects of domestication legacies on plant and soil stoichiometry and related ecosystem services (e.g. plant yield and soil fertility).

    Keywords: T-physiology hypothesis, decomposition, growth rate hypothesis, nutrient cycling, rops, soil age hypothesis

  • Fried G, Caño L, Brunel S, Beteta E, Charpentier A, Herrera M et al. (2016)

    Monographs on Invasive Plants in Europe: Baccharis halimifolia L.

    Botany Letters 1-27.

    AbstractThis account presents information on all aspects of the biology and ecology of Baccharis halimifolia L. that are relevant to understanding its invasive behaviour. The main topics are presented within the framework of the new series of Botany Letters on Monographs on invasive plants in Europe: taxonomy, distribution, history of introduction and spread, ecology (including preferred climate and habitats, responses to abiotic and biotic factors, ecological interactions), biology (including physiology, phenology and reproductive biology), impacts and management. Baccharis halimifolia L. (Asteraceae), groundsel bush, is a broad-leaved shrub native to the coastal area of southeastern North America. Introduced for ornamental and amenity purposes during the nineteenth century, it has become naturalized in several coastal habitats, as well as in disturbed areas of western Europe. The shrub is now common on the Atlantic coast of Europe from northern Spain to Belgium and it is an emerging problem on the Medit...

    Keywords: Biogeography, climate, ecophysiology, environmental impacts, germination, habitats, invasion history, management strategies, natural enemies, reproductive biology, salinity, species distribution modelling

  • Hutter S, Brugger K, Sancho Vargas V, González R, Aguilar O, León B et al. (2016)

    Rabies in Costa Rica: Documentation of the Surveillance Program and the Endemic Situation from 1985 to 2014.

    Vector borne and zoonotic diseases (Larchmont, N.Y.).

    This is the first comprehensive epidemiological analysis of rabies in Costa Rica. We characterized the occurrence of the disease and demonstrated its endemic nature in this country. In Costa Rica, as in other countries in Latin America, hematophagous vampire bats are the primary wildlife vectors transmitting the rabies virus to cattle herds. Between 1985 and 2014, a total of 78 outbreaks of bovine rabies was reported in Costa Rica, with documented cases of 723 dead cattle. Of cattle outbreaks, 82% occurred between 0 and 500 meters above sea level, and seasonality could be demonstrated on the Pacific side of the country, with significantly more outbreaks occurring during the wet season. A total of 1588 animal samples, or an average of 55 samples per year, was received by the veterinary authority (SENASA) for rabies diagnostic testing at this time. Of all samples tested, 9% (143/1588) were positive. Of these, 85.6% (125/1588) were from cattle; four dogs (0.3% [4/1588]) were diagnosed with rabies in this 30-year period. Simultaneously, an extremely low number (n = 3) of autochthonous rabies cases were reported among human patients, all of which were fatal. However, given the virus' zoonotic characteristics and predominantly fatal outcome among both cattle and humans, it is extremely important for healthcare practitioners and veterinarians to be aware of the importance of adequate wound hygiene and postexpositional rabies prophylaxis when dealing with both wild and domestic animal bites.

    Keywords: Bats, Cattle, Rabies, Vector, Zoonosis

  • Keppel G, Gillespie T, Ormerod P, Fricker G (2016)

    Habitat diversity predicts orchid diversity in the tropical south-west Pacific

    Journal of Biogeography.

    Aim To determine if habitat diversity, as estimated by climatic and topographic variables, can predict patterns of orchid diversity on different islands and archipelagos with similar explanatory power to biogeographical variables, such as area, isolation and age of an island. Location Sixty-three islands on eight archipelagos (Solomon Islands, Vanuatu, New Caledonia, Fiji, Samoa, Tonga, Niue and the Cook Islands) in the south-west Pacific. Methods For each island, we determined the orchid species present, age, area, isolation, and indicators of topographic heterogeneity and climatic variability. We then determined the power of various biogeographical, climatic and topographic variables to predict the number of indigenous and endemic species on archipelagos, and on islands within archipelagos, using generalized linear models (GLMs) and generalized linear mixed models (GLMMs) respectively. Results We identified a total of 552 species in 110 genera. Area was the only significant biogeographical variable for predicting patterns of orchid species diversity on archipelagos and islands. However, climatic and topographic predictors of habitat diversity performed similarly well. The range in curvature was the best indicator of species richness from the topographic variables, while the range of temperature was the best climatic predictor. These key variables were often strongly correlated with area. Main conclusions Climatic and topographic variables are useful indicators of habitat diversity. The high explanatory power of area and climatic and topographic predictors, and the strong correlation among these variables, suggests that increasing habitat diversity with increasing area may be the major driver of the species–area relationship. Using climatic and topographic variables as predictors of species richness therefore allows determining the key environmental factors and processes driving species diversity.

    Keywords: Orchidaceae, biodiversity, climate, endemism, environmental heterogeneity, habitat diversity, island biogeography, species richness, species–area relationship, topography

  • Moyes C, Shearer F, Huang Z, Wiebe A, Gibson H, Nijman V et al. (2016)

    Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas.

    Parasites & vectors 9(1) 242.

    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60 % tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100 % tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

    Keywords: Entomology, Infectious Diseases, Parasitology, Tropical Medicine

  • Onstein R, Jordan G, Sauquet H, Weston P, Bouchenak-Khelladi Y, Carpenter R et al. (2016)

    Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats

    Global Ecology and Biogeography.

    Aim Ecologically driven diversification can create spectacular diversity in both species numbers and form. However, the prediction that the match between intrinsic (e.g. functional trait) and extrinsic (e.g. climatic niche) variables may lead to evolutionary radiation has not been critically tested. Here, we test this hypothesis in the Southern Hemisphere plant family Proteaceae, which shows a spectacular diversity in open mediterranean shrublands in the Southwest Australian Floristic Region (SWAFR) and the Cape Floristic Region (CFR). Species in the Proteaceae family occupy habitats ranging from tropical rain forests to deserts and are remarkably variable in leaf morphology. Location Southern Hemisphere. Methods We built a phylogenetic tree for 337 Proteaceae species (21% of the total), representing all main clades, climatic tolerances and morphologies, and collected leaf functional traits (leaf area, sclerophylly, leaf shape) for 261 species and climatic niche data for 1645 species. Phylogenetic generalized least squares regression and quantitative-trait evolutionary model testing were used to investigate the evolutionary pathways of traits and climatic niches, and their effect on diversification rates. Results We found that divergent selection may have caused lineages in open vegetation types to evolve towards trait and climatic niche optima distinct from those in closed forests. Furthermore, we show that the interaction between open habitats, dry, warm and/or mediterranean climates, and small, sclerophyllous, toothed leaves increases net diversification rates in Proteaceae. Main conclusions Our results suggest that the evolution of specific leaf adaptations may have allowed Proteaceae to adapt to variable climatic niches and diversify extensively in open ecosystems such as those in the CFR and SWAFR. This match between morphology and environment may therefore more generally lead to evolutionary radiation.

    Keywords: Adaptation, climatic niche, evolutionary radiation, functional trait, leaf shape, mediterranean-type ecosystem, sclerophylly